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Abstract— This paper explores the use of statistical learning
methods on randomized path planning algorithms. A contin-
uous, randomized version of A* is presented along with an
empirical analysis showing planning time convergence rates in
the robotic manipulation domain. The algorithm relies on sev-
eral heuristics that capture a manipulator’s kinematic feasibility
and the local environment. A statistical framework is used to
learn one of these heuristics from a large amount of training
data saving the need to manually tweak parameters every time
the problem changes. Using the appropriate formulation, we
show that motion primitives can be automatically extracted
from the training data in order to boost planning perfor-
mance. Furthermore, we propose a Randomized Statistical
Path Planning (RSPP) paradigm that outlines how a planner
using heuristics should take advantage of machine learning
algorithms. Planning results are shown for several manipulation
problems tested in simulation.

I. INTRODUCTION

In order to solve a specific domain of tasks in path
planning or manipulation, most complex robotic systems
require prior knowledge of the environment and the robot.
Such knowledge usually requires knowing the robot’s kine-
matic capabilities, the type of environment, consequences
of traversing configuration paths in the environment, the
definitions of a goal condition, and what composes optimal
or desired solutions. While a lot of this domain knowledge is
necessary to solve the problem, it begs the question of how
much the robot can autonomously learn from its domain and
how much the human designer needs to specify. An example
of knowledge that can be inferred automatically are the
reward functions and path heuristics that are very commonly
used in planners. Creating these functions is time consuming
and it is not trivial to go from a desired robotic behavior
to a reward function that encodes this behavior. But given
training instances of desired path trajectories from various
initial and goal conditions, a robot should be able to learn
its own reward and heuristic functions so that it mimics the
desired behavior. Another example of domain knowledge is
the relationship between configuration space and task space.
Usually inverse kinematics are used to compute the goal
configuration from the given task, transforming the planning
problem from the workspace to the configuration space. The
first drawback with IK is that the configuration might not be
reachable until the path planning algorithm is executed and
fails. The second drawback is that the relationship between
the two spaces is highly dependent on the task the robot is
supposed to perform. Unless domain specific knowledge is
encoded, most robots will act sub-optimally in a complex
environment. We focus on solving these problems using
statistical learning methods.
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Most of planning in continuous domains centers around
search based methods or road maps. Search based methods,
including randomized search algorithms like RRTs [6], rely
on finding a path using heuristics. Most of the time, these
heuristics are hand optimized for the particular robot and
environment. The other alternative is to create a connected
graph in the configuration space so that planning is reduced
to graph search combined with local planners [13]. Each
planner has its own advantages and disadvantages, and a
lot of research in the path planning community deals with
proposing heuristics to make up for inherent disadvantages
in a planning algorithm [1]. In fact, any type of traditional
planner heavily relies on heuristics for fast convergence.

Fig. 1. Predicted end-effector trajectories from the learned motion primitive to take
cups out of the cupboard given just the initial and goal positions of the end effector.

Recently, heuristics trained using statistical learning meth-
ods have been gaining popularity. [9] learns the direction
to approach an object such that the grasping quality is the
highest'. [3] trains a classifier to compute whether there
exists a plan for given starting and goal configurations, ad-
dressing the problem that randomized planners never return
if a solution does not exist. Creating the right heuristics
given a goal behavior of the robot is not a trivial task. Max-
Margin Planning [10] addresses this problem in a discrete,
low-dimensional domain by borrowing ideas from structured
learning [15]. Structured learning is necessary because the
transformation from costs to trajectories cannot be easily
parameterized. The MMP algorithm parameterizes its cost
function as a weighted sum of features extracted from the
environment. In order to get the appropriate weights, A*
acts as the transformer from costs to trajectories and is
used to compute a sub-gradient of the weights with respect

IGrasping quality is measured by force closure.



Fig. 2. Graphical representation of all the components in Randomized A*. The red
regions represent high cost regions, the arrows represent directions to the child nodes,
f(q) is the sampling policy, and the light blue region represent the sampling radius.

to the optimization criteria. One drawback is that Max-
Margin Planning requires an optimal planner in the given
domain, making it infeasible in high-dimensional domains
like manipulation and humanoid locomotion tasks.

First, we propose a path planning algorithm that can
return a semi-optimal path with respect to several distance
metrics that encode all the domain information needed: a
cost function, a distance metric, a goal heuristic, and a
sampling-based policy. We call this planner Randomized
A* because it is based on A* and the RRT family of
algorithms. We use this planner to produce solutions to
random manipulation problem instances. At first, solutions
are slowly generated off-line to build a training set. In order
to build the cost function, we show how motion primitives
specific to the task can be automatically extracted from the
training data. We define the cost by how far the planner strays
from the motion primitive. On the other hand, the policy
is trained by analyzing the local environment around the
manipulator for keyholes and openings. Because we require
training examples, the framework we propose is meant for
commonly occurring tasks that need to be solved repeatedly;
for example, picking up cups from a sink and putting them
in a cupboard. Although simple, the problem can become
arbitrarily complex as various obstacles are added to the
kitchen. We show that we can learn a generalized model
for this task without encoding manipulator specific inverse
kinematics or kitchen specific motion primitives.

II. RANDOMIZED A*

A* relies on a discrete set of actions to choose from
for every discrete state it travels to. Continuous domains
have infinitely many states and actions, and finding the
correct discretization is usually impossible. RA* lowers the
branching factor by randomly sampling the action space for
the neighbors to a node. It stores all previously visited nodes
in a space-partitioning data structure without binning them?.
In order to keep nodes from clumping together, the array
has the property that a sphere of radius 7 around any node

2We use kd-trees for the RA* implementation

does not contain other nodes. To compute the neighbors of
each node, RA* randomly generates L children around a
ball of radius B in the configuration space. If a child can’t
be reached from its parent or it is close to any previously
generated node, it will be discarded. Thus, all nodes are
guaranteed to have at most L dispersed children. Each child
evaluates its total cost like in A*, and the child with the least
total cost will be traversed first (see Figure 2). There are a
couple of parameters that control the evolution of the search:

e acost function h. : C — R where C is the configuration
space.
o a distance metric p: C xC — R
o a goal heuristic hgy : C — R
o a sampling radius B for creating children
« a branching factor L (5 is used for all experiments)
« adistance threshold 7 that controls how close two states
need to be to be counted as the same state.
Given a continuous trajectory 7(t) where t € [0, 1], we
define the cost of the trajectory through configuration space
as:

/0 he(r(1)) |7 (D)l dt (1)

Since RA* returns a discrete path P = {c¢o, c1, ..., ¢ }, we
approximate this continuous cost by minimizing

f(P) = ZP(CFhCi)hc(Ci) (2

Note the subtle differences between A* where the op-
timization criteria would be to just minimize fa.(P) =
> he(c;). This difference is because A* usually has a
discrete set of uniformly distributed states, so the distance
between each state is roughly the same and can be safely
ignored. In RA*, the distances are random and depend on
the sampling radius B. Therefore, a normalization factor is
needed to make sure that a finely sampled path has roughly
the same cost as the same path with fewer waypoints. If the
cost function is highly nonlinear, this obviously won’t hold
for really big distances; but because the sampling radius is
bound by B, Equation 2 can be treated as a linearization of
the true cost in Equation 1.

Let ¢ = Sample(c, B) return a random sample ¢’ such
that p(c,¢’) < B. See Algorithm 1 for an implementation of
Randomized A*.

A. Analysis

One advantage with Randomized A* is that it does not
need the goal explicitly in configuration space. Most real
world manipulators are redundant, so there are many solu-
tions for a given grasping or moving problem. When using
IK, the question turns to which solution to pick; however,
this problem is not present in Randomized A*.

We tested both a goal directed version of RRTs and
Randomized A* on a simple block pickup problem. If the end
effector is within an € to its goal position, the planner will
return a solution. Even after 30,000 node expansions, RRTs
were not able to converge to a solution while Randomized



Algorithm 1: Randomized-A*

1 Input: initial configuration c¢;+

2 // Insert both into List and ListAll

3 Insert(cinit, null, 0, 0) // no parents, f =0, g =0
4 Cpest <— null

5 while True do

6 /I get the best node such that f is the lowest.

7 /I here g = hy(c)

8 {c, f, g} < List.pop_best()

9 if g < e then

10 Chest < C

11 break

12 children < 0

13 for iter = 1 to Maxlter do

14 ¢’ = Sample(c, B)

15 {Cnears frnears near } — ListAll.nearest(c’)

16 if not InCollision(c’) and p(c,eqr, ') > 1 then
17 coStpew < frear — Gnear + hc(cl)p(cneara C/)
18 Insert(c/, ¢, costpew + hg(c'), hg(c'))

19 children «— children + 1

20 if children = L then

21 break

22 end

23 end

24 Extract Path by back-tracing from cpest

//\1

Fig. 3. The node expansion graph of RA* of a 3 degree of freedom planar robot
arm. The initial configuration is at the lower left corner and the goal is the big red
mark. While most runs were able to converge fast, this particular run got stuck in
a cusp created by the collision objects. After a couple hundred iterations, the nodes
crowded the space and got through to the goal.

Histogram of Path Cost

Fig. 4. Histogram of path lengths of a fixed problem over many runs. As can be seen,
RA* has a loose bound on optimality, but most paths are still close to the minimum.

A* is able to find solutions close to 100% of the time.
This can be attributed to two reasons. First, Randomized A*
explores only promising space while regular RRTs explore
the whole space. Figure 3 shows the space exploration for a
toy problem. Note that space exploration only occurs in the
regions closest to the goal. RRT Connect [6], a faster RRT
algorithm, could not be used because the goal configuration
isn’t known apriori.

Because a lot of precision is needed to hit a small ball of
radius € in configuration space, usually Randomized A* will
clump around that region until it generates a sample inside it.
This can be avoided by making the goal threshold e bigger.
After many trials, we conclude that it is better to increase
€ a little and use the Jacobian to converge on the closest
solution®. We use the Damped Least Squares [8] method for
the joint update:

60 = JT(JJT + /\21)_1(efinal - einitial) (3)
where J = g—‘; is the Jacobian, e is the end effector
position, and )\ is a regularization parameter.

The question of optimality always arises when talking
about A*. Figure 4 shows a histogram of path costs from
various runs of the same problem. Most solutions do come
close to the optimal path. After producing a solution with
randomized planners, usually path smoothing is done to the
raw solution to minimize it within its homotopy class. Here,
it is important that the randomized planner at least hits the
correct homotopy class.

III. LEARNING HEURISTICS

When first using RA*, it is important to calibrate the ratio
between h. and hg, just like in A*. If h. is big compared to
hg, then RA* will have no incentive to explore and will most
likely start a breadth-first search in state space. If h. is small
compared to hg, then the algorithm can get stuck in local
minima more easily, the returned solution will also be less
optimal. Once an appropriate ratio is found, use it to create
the training data regardless of optimality or convergence
rates. In general, the best way to obtain the ratio is by testing
various values on random problem instances.

3Since € is still small, gradient descent does not have any local minima.
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A. Cost Function

The cost function penalizes the robot for being in a certain
state. It can be used to guide the robot around regions of
singularity/instability and for getting solutions faster because
the robot, in some sense, greedily descends using the cost
function when searching. Furthermore, the goal is to learn a
cost function such that the optimal solutions that Randomized
A* produces match the training data as much as possible.
The training data itself is produced off-line by gathering data
from a human operator controlling the robot, or by running
Randomized A* overnight.

The goal is to look for patterns in each trajectory * 7;(¢).
Imagine that an arm takes objects from a sink and places
them on a counter (see Figure 7). One easily visible pattern
to all trajectories is that the end effector goes up first to get
out of the sink. Then its height remains roughly constant
until right under the cup’s goal position (Figure 6). The goal
is to extract a motion primitive x(t) to capture this behavior.
v is the trajectory of the end-effector in the workspace, and
has two constraints at its ends:

0 1
1(0) = |0 p(1) = |0 4)
0 0

The end values are chosen arbitrarily. Once p(t) is found,
we use it to compute the real motion primitive path p'(¢)
the manipulator should follow in the same way as [4] by
transforming it so that the start and goal positions match the
workspace. Given the real initial position s and the final goal
workspace position g, we compute an affine transformation
A = [R|T] such that

p(t)=Aop(t)=Rut)+T (5)
pWO)y=s p1)=g (6)
Note that there is still one degree of freedom: the roll

around the line going through s and g. There are a couple

4All trajectories are defined by a piecewise linear function of waypoints
and t € [0, 1].
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Shows the dependence of RA* on the distance threshold and sampling radius parameters. Average Nodes are directly proportional to the time of the algorithm.

of ways to deal with this. One is to sample the roll until
a trajectory away from obstacles is found>. Another is to
statistically measure the trajectory roll from the training data
and apply that. Figure 6 shows the final trajectories calculated
from the motion primitives and initial and goal positions by
measuring the roll statistically.

In this paper, we parameterize p by a cubic function. Cubic
functions in workspace are enough to capture simple patterns
in a kitchen environment. However, the following framework
applies to any parameterization of motion primitives.

The cost function is built by penalizing areas far away
from the final path p'. Solving for the minimum distance for
a cubic polynomial involves finding the roots of a 5" order
polynomial, a numeric calculation. A quicker, more robust
way to compute cost is to sample u" at a discrete number of
time steps {t; }. The minimum distance can be approximated
by finding the closest sample on the motion primitive to a
given point. Therefore, the cost function is simplified to

he(q) = min | ForwardKinematics(q) — i/ (t;)||*>  (7)

Working with workspace trajectories allows generalization
across different manipualtors, and the trajectory is always in
3D. The motion primitives themselves are designed to fit the
environment, so a workspace motion primitive for the end-
effector makes more sense than a configuration space motion
primitive. Table I shows results using motion primitives for
various problems.

B. Extracting Motion Primitives

In order to remove noise, a cubic polynomial is fit to all
training trajectories 7;(t),

®)

5The trajectories computed from motion primitives don’t necessarily have
to be collision free.
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Constructing motion primitives from training data. Each trajectory is the position of the end-effector through time. (a) Shows trajectories of many runs. Red is for

coming to the sink from the top. Yellow is for bringing the glass from the sink to the counter. Green is going from the counter to the sink. (b) Trajectories with cubic functions
fit to them. (c) Predicted trajectories using the computed motion primitives. One motion primitive is computed for every color.

such that 7/ best approximates 7;. Before a pattern can
be extracted all 7/ have to be aligned together. The best
affine transformation A; = [R;|T;] must be found for each
trajectory such that:

D lAion — Ao ©)
i,
is minimized. It is not very clear how to minimize this
since the distance between two cubic functions itself is
not a simple expression. Therefore, assume that in the best
alignment, for any ¢y € [0, 1]

Vi Ti(to) = 5(to)

Now sample N times from [0, 1] to form a set {¢;} and
define X; ; = 7;(t;). Equation 9 is simplified by minimizing

(10)

N
YD IR Xik = By Xy + (T =Ty (D
i,j k=1
We compute the alignment by using Generalized Pro-
crustes Analysis [14] (Figure 6). Once aligned, we extract the
mean cubic polynomial and transform it such that Equation
4 holds. Note that alignment and motion primitive extraction
could be done using more general splines.

C. Paradigm

The driving force behind learning in path planning is that
researchers optimize heuristics for their specific problems
all the time in order to ensure good convergence rates and
solutions. Cognitive research has good evidence that humans
create motion primitives and other heuristics on the fly as
specific problems are encountered [11]. The question is how
to create path planners that embed such a learning framework
automatically. In this paper, we diverge a little from the
mainstream path planning methods in that we don’t seek to
create a general heuristic to path planners that can be applied
to all problems. Instead, we seek to learn heuristics specific
to the problem at hand. These heuristics are data-driven in
that they require previous attempts of solving the problem

Success Rate  Node Expansion(cx time)

Cup in Sink 96% 1620
(with Motion Primitives) 100 % 1397
Cluttered Cup in Sink 76% 2500
(with Motion Primitives) 90% 1737
Cluttered Cup in Cupboard  90% 2334
(with Motion Primitives) 97% 2053

TABLE 1
TABLE SHOWS A COMPARISON OF MOTION PRIMITIVES AVERAGED OVER MANY
RUNS OF SEVERAL PROBLEMS. IN EACH PROBLEM, THE START AND GOAL
POSITION FOR THE ROBOT CHANGES. THE NON MOTION PRIMITIVE COST WAS
CHOSEN TO BE A CONSTANT VALUE THAT GIVES THE BEST RESULTS. RUNS

EXCEEDING 5000 RA* NODE EXPANSIONS ARE DECLARED TO BE A FAILURE.

in order to encode domain specific knowledge. It should be
mentioned here that a learned heuristic should still generalize
well across different problem instances of the same family
of problems.

Regardless of the heuristics, the path planning algorithm
used is still vital to success. The main reason a randomized
version of A* is proposed is that it is heuristic driven, works
in continuous spaces, and is randomized. Randomization is
necessary to ensure probabilistic completeness and a certain
degree of spontaneity in the system [7]. Note that each
heuristic manages its own space of important factors:

« cost function - Environment specific

o distance metric - Robot specific, encodes how far

configurations of the robot are with respect to each
other.

« goal function - Goal specific, can be arbitrary.

« sampling function - Local policy specific.

Combined, the heuristics can summarize a good amount
of domain specific information.

IV. RESULTS AND CONCLUSION

This paper proposes and analyzes several ways to deal with
planning heuristics in continuous spaces by using learning.
A randomized version of A* is presented that converges
relatively fast in high-dimensional spaces. All tests were
done with the PUMA robot arm performing several tasks



(Cup in Sink)

Fig. 7.

Fig. 8. Another comparison of training data (yellow) and the trajectories p (red)
constructed from the motion pritive using only the initial start and goal positions in
workspace.

in a cluttered kitchen environment. Because Randomized
A* does not rely on the explicit inverse kinematics of the
robot, it is applicable to any type of robot. The algorithm is
very similar to discrete A* except that it requires two more
parameters to deal with neighbors in continuous space: the
distance threshold and the sampling radius.

To enforce RA*, a data-driven heuristic is presented. It ex-
tracts and uses motion primitives from analyzing trajectories
of the manipulator in workspace coordinates. The motion
primitives are general enough to be used again on similar
problems, but specific enough to recognize patterns (see Fig-
ure 8). The fact that primitives are generated automatically
means that a robot can have a motion primitive for any family
of tasks it is given.

A. Future Work

Although we use RA* only for manipulation planning,
it could be applied in other areas like in non-holonomic
planning to find and reuse local policies. One goal is to
apply RSPP to humanoid navigation on rough terrain. It is
still a big question whether useful motion primitives could be
automatically extracted from humanoids given large amounts
of data.

(Cluttered Cup in Sink)

N
i

(Cluttered Cup in Cupboard)

The various test runs used to evaluate RA* and motion primitives.
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