
BiSpace Planning: Concurrent Multi-Space
Exploration

Rosen Diankov and Nathan Ratliff
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA

{rdiankov, ndr}@cs.cmu.edu

Dave Ferguson and Siddhartha Srinivasa
Intel Research Pittsburgh

4720 Forbes Ave
Pittsburgh, PA

{dave.ferguson, siddhartha.srinivasa}@intel.com

James Kuffner
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA

kuffner@cs.cmu.edu

Abstract— We present a planning algorithm called BiSpace that
produces fast plans to complex high-dimensional problems by
simultaneously exploring multiple spaces. We specifically focus
on finding robust solutions to manipulation and grasp planning
problems by using BiSpace’s special characteristics to explore
the work and configuration spaces of the environment and robot.
Furthermore, we present a number of techniques for constructing
informed heuristics to intelligently search through these high-
dimensional spaces. In general, the BiSpace planner is applicable
to any problem involving multiple search spaces.

I. INTRODUCTION

One of the long-term goals of robotics is to develop a
general purpose physical agent that can co-exist with, and
provide assistance to, human beings. Substantial progress has
been made toward creating the physical components of such an
agent, resulting in a wide variety of humanoid robots that pos-
sess amazing potential for dexterity and finesse. But progress
toward controlling such agents in real-time in unstructured,
inhabited environments has been slower.

Planning algorithms represent the state-of-the-art in control
strategies for these agents. However, in many real-world
scenarios the action possibilities for the agent can become very
high dimensional and contorted, rendering many algorithms
ineffective. Moreover, the environments in which these agents
need to operate are often not known a priori and are often
dynamic. A successful planning algorithm, therefore, must
perform quickly so that the resulting solution can be executed
before the environment changes substantially.

In response to these planning challenges, a number of
sampling-based search algorithms, such as the Rapidly-
exploring Random Trees (RRT) family of algorithms [1], have
been developed which demonstrate encouraging empirical
performance on high-dimensional planning problems. RRTs
in particular are easy to implement and have shown fast
convergence to feasible solutions on a wide variety of motion
planning scenarios [1, 2, 3, 4, 5].

In this work, we focus on the problem of mobile robotic
manipulation. Specifically, the robot must be able to maneuver
to an object and grasp it without a human specifying a priori
where and how the object should be picked up. In these
manipulation scenarios, the robot must find a feasible motion
trajectory from its initial configuration to a grasp-achieving

Fig. 1. Humanoid robot grasps an object by autonomously searching through
the space of possible grasps and torso movements.

configuration. While most sampling-based motion planning
algorithms assume the goal is a point within the configuration
space of the robot, the goal in manipulation problems can
consist of a continuous subset of the configuration space —
any configuration of the robot resulting in a feasible grasp can
be considered a goal configuration.

For example, consider a grasping problem where the robotic
manipulator has to pick up a cup from the sink to put
in a cupboard. The manipulator first has to move its end-
effector close to the cup and then it has to achieve the
correct contacts with the cup, constraints that are inherently
defined in the workspace. In general, there is a fundamental

mismatch between the space used to describe the goals of the
manipulation planning problem and the configuration space
used to search for a solution.

Methods exist to overcome this mismatch, such as using
inverse kinematics (IK) to transform the workspace constraints
into configuration space goals [6, 7]. However, as the dimen-
sionality of the problem increases the effective dimensionality
of the goal set increases as well, often causing these methods
to become prohibitively slow. Further, it has been shown that
such approaches can fail to converge to a valid goal and
are usually limited to finding only one of the potentially
infinite number of goals [8]. When planning through obstacle-
laden environments, having only one goal configuration is
problematic, as this configuration is not guaranteed to be
reachable from the initial configuration of the robot.

Instead, Bertram et al. [8] developed a nice extension to
the RRT algorithm that removes the need for an IK solution
and instead accommodates a goal specified in the workspace
of the manipulator’s end effector. In their approach they use a
workspace goal metric to select the configuration in the search
tree that is closest to the workspace goal and then extend
out from this configuration in a random direction. This goal
extension occurs randomly throughout the growth of the tree.

A more recent approach by Vande Weghe et. al. [9] uses
the Jacobian Transpose to do an even more focused search
toward a workspace goal. Their approach operates similar to
Bertram et al.’s except during the extension stage they use
the Jacobian Transpose to move through configuration space
in the direction of the workspace goal, resulting in a more
efficient overall search. However, both of these algorithms are
restricted to growing a single, forwards-directed search tree,
and therefore do not capture the benefits of the more efficient
bi-directional RRT approaches [10].

Thus, current approaches are limited to either approxi-
mating the desired goal configurations and concentrating the
entire search in configuration space, or to using an accurate
workspace goal representation and growing a single goal-
biased search tree. Alternatively, in the following section we
present an approach that allows us to search in multiple spaces
simultaneously, with a forwards-directed search tree grown
through one space, known as the configuration space, and a
backwards-directed tree grown in another space, known as the
goal space. This algorithm, known as BiSpace, relaxes the
need for an explicit mapping from one space to another and
in our present application is able to significantly reduce the
amount of searching that occurs in the full configuration space.

After describing the algorithm in depth we provide com-
parative results involving a collection of complex robotic
mechanisms and present an experimental results involving a
physical 11 degree of freedom manipulator arm.

II. THE BI-SPACE ALGORITHM

The core idea of the BiSpace algorithm is to grow two
different search trees at the same time. One tree explores the
full configuration space starting from the initial configuration

Algorithm 1: BISPACE(qinit, bgoals)

/* ρ ∈ [0, 1] - uniform random variable */
forward ← false1

INIT(Tf , qinit); INIT(Tb, bgoals)2

for iter = 1 to maxIter do3

if forward then4

for fiter = 1 to J do5

q ← EXTEND(Tf)6

if ρ < FOLLOWPROBABILITY(q) then7

bfollow ← NEARESTNEIGHBOR(Tf , q)8

{success, q′} ← FOLLOWPATH(q, bfollow)9

if success then10

return success11

end12

else13

for biter = 1 to K do EXTEND(Tb)14

forward ← not forward15

end16

return failure17

and guarantees feasible, executable, and collision-free trajec-
tories, while the other tree explores the backspace starting
from the set of goal configurations and acts as an adaptive,
well informed heuristic. The BiSpace algorithm proceeds by
extending RRTs in both spaces. Once certain conditions are
met, the forward tree attempts to follow the goal space tree
path to the goal (Figure 2). The algorithm combines elements
of both bidirectional RRTs and the RRT-JT algorithm [9].

For clarity, we denote a configuration with q and a goal
space configuration with b. We assume that there exists a map-
ping F (·) from the configuration space to the goal space such
that F (q) maps to exactly one goal space configuration. Using
this notation, given a goal space distance metric δb(F (q), b),
the goal of planning is to find a path to a configuration q such
that δb(F (q), bgoals) < εgoal.

The flow of the BiSpace algorithm is summarized by Algo-
rithm 1. The forward variable is used to keep track of which
tree to grow. If forward is true, then the configuration space
tree is extended J times, using the standard RRT extension
algorithm EXTEND [1]. Alternatively, if forward is false, then
the goal space tree is extended K times. After each iteration,
the value of forward is flipped so that the opposite tree is
extended during the subsequent iteration. After a new node
q is added to the configuration space tree, a follow step is
performed from q with probability FOLLOWPROBABILITY(q).
An example of such a distribution is described in detail in
Section IV-C. If a follow step is performed, then q is extended
toward bfollow and its parents.

The differences between BiSpace and BiRRTs become clear
in the follow step. In the BiRRT case, following consists of
connecting the two trees along the straight line joining q and
bfollow; this is possible since bfollow is also in the config-
uration space. Because each branch of the both the forward
and backward trees in the BiRRT algorithm represent a valid

(1) (2) (3) (4)
Fig. 2. BiSpace Planning: A full configuration space tree is grown out from the robot’s initial configuration (1). Simultaneously, a goal back tree is randomly
grown out from a set of goal space nodes (2). When a new node is created, the configuration tree can choose to follow a goal space path leading to the goal
(3). Following can directly lead to the goal (4); if it does not, then repeat starting at (1).

collision free path in the configuration space, connecting the
two trees immediately implies a path can be found from the
start configuration to the goal configuration. However, that is
not true with the BiSpace algorithm. Since the goal space
is different from the configuration space, the path suggested
by the goal space tree must be validated in the configuration
space.

Each unique path from a node in the goal space tree to a goal
can be used by the forward tree as a heuristic to informatively
bias extension toward the goal. Starting from bfollow, such a
path can be extracted by recursively following its parents. The
forward tree can use the goal space path generated by bfollow

as a bias to greedily follow it. If the forward tree succeeds in
reaching the goal, a solution is returned (Figure 2). Otherwise,
the search continues as before.

Algorithm 2: {success, q} ← FOLLOWPATH(q, b)

/* ρ ∈ [0, 1] - uniform random variable */
success ← false1

for iter = 1 to maxFollowIter do2

best← null3

bestdist← γinflation ∗ δb(F (q), b)4

for i = 1 to N do5

q′ ← SAMPLENEIGHBORHOOD(q)6

if δb(F (q′), b) < bestdist then7

bestdist← δb(F (q′), b)8

best← q′9

end10

if best is null then11

if b.parent is null then12

break13

b← b.parent14

else15

q ← Tf .add(q, best)16

end17

success← δb(F(q), b.root) < εgoal18

/* Optional IK test */
if not success and (q’ ← IKSOLUTION(q, Tb.goals))19

then
{success, q} ← BiRRT(Tf , q, q’)20

Path following is an integral part of the BiSpace algorithm.

It generates a very powerful bias as to where the configuration
tree should grow by using the nodes in the goal space tree.
Each goal space node has already validated a subset of the
conditions necessary for the configuration tree to follow it.
Although the FOLLOWPATH function is general, we present a
simple, but effective, implementation of a stochastic gradient
approach for it (Algorithm 2). The forward tree slowly makes
progress by randomly sampling configurations that get close
to the target goal space node b. Whenever the forward tree
stops making progress, it checks if b has any parents. If it
does, b is set to its parent and the loop repeats. If there are no
more parents, the goal space distance from q to the final parent
b.root is checked: if this distance is within the goal threshold,
the function returns success; otherwise it returns false.

FOLLOWPATH can require a lot of samples if SAM-
PLENEIGHBORHOOD uniformly samples the neighborhood of
q. This is especially a problem for the high-dimensional
configuration spaces used in manipulation planning. Instead,
we sample each of the dimensions one at a time while leaving
the rest fixed. This type of coordinate descent method has
been shown to perform better than regular uniform sampling
in optimization and machine learning algorithms [11]. Further-
more, SAMPLENEIGHBORHOOD can incorporate the Jacobian
transpose idea from [9] to further bias samples in the correct
direction. Because it is not always beneficial to be greedy due
to many local minima, we introduce γinflation to relax the
distance metric we are minimizing1.

As an optional addition to the FOLLOWPATH algorithm,
we propose using IK solutions, if they exist, to speed up
planning. After the forward tree terminates at a configuration
q, an IK solution can be checked for a subset of the DOFs
of the configuration space. If there exists a solution, we can
run a bidirectional RRT using the subset of DOFs used for
IK to find a path from q to the new goal configuration. For
example, if a 7 DOF arm is mounted on a mobile platform,
its full configuration space becomes 10 dimensional, however,
the arm’s IK equations will still remain 7 dimensional. In
this case, IKSOLUTION(q, goals) will use the arm’s position
from the last configuration q and check the standard arm IK.
Having such a check greatly reduces planning times and is

1This has a similar effect to inflating the goal heuristic in A*. We use
γinflation = 1.4 for all results.

Fig. 3. The hand and arm area treated separately in the grasp planning
framework. Only the hand is allowed contact with the environment. The arm
is only used for planning.

not prohibitively expensive if the IK equations are in closed
form. While some algorithms ignore IK solutions, BiSpace can
naturally use inverse kinematics to its advantage. Empirical
results suggest that BiSpace can experience a 40% decrease
in planning time when exploiting available IK solutions.
However, it should be noted that having inverse kinematics
equations for a robot does not guarantee feasible solutions
can be efficiently found.

III. APPLICATIONS TO MANIPULATION AND GRASP
PLANNING

In grasp planning, the task is to plan for an arbitrarily
complex robot to move to pick up any object in the envi-
ronment. Ideally, the planner decides how to best grasp the
object and how to manipulate the robot to achieve the desired
grasp. Recently, [6] proposed a method to solve this problem
when the robot is stationary and there exist IK equations that
provide an efficient mapping from workspace to configuration
space. They use a two-tiered approach: they first find the
workspace positions of any feasible grasps by sampling from
a precomputed table and testing in the real environment, then
seed a BiRRT planner with the IK solution of each of those
workspace positions. Applying their method to a mobile robot
poses several challenges because it relies on producing fast
configuration space goals from workspace positions of the end-
effector of the robot. As we show, this two-tiered approach is
much slower than using BiSpace. Nevertheless, our systems
level approach to solving manipulation and grasp planning for
mobile robots is inspired from their method (Figure 4).

We divide each robot into two semantic pieces: the hand
and the arm (Figure 3). Only the hand can make contact
with the target object. Following [6], grasp tables can be
precomputed for every hand-object pair. These grasp tables are
computed with the detached hand approaching the object from
all possible directions with all possible preshapes; usually the
final tables are on the order of 300-800 good grasps per object
(Figure 1). In the real environment, each grasp in the table
is tested against the object and environment for collisions.
Note that collisions are only checked with the detached hand

Fig. 4. A framework for grasp planning. BiSpace allows exploration of the
space without locking down on a particular IK solution.

since the full configuration of the robot is unknown. Once a
collision-free grasp is found, we treat the final hand pose as
the goal. The goal of the BiSpace planner is now to move
the robot so that the hand attached to it achieves the desired
grasp. For simplicity we assume that the planner only moves
the arm and the mobile base it is mounted on.

Since BiSpace is a randomized algorithm, in general it
cannot detect in a finite amount of time that a given collision-
free grasp is impossible to reach. Therefore, seeding BiSpace
with only one grasp at a time is dangerous as the planner might
never find a solution. Instead, it is favorable to seed the BiS-
pace planner from the beginning with as many feasible grasps
as possible using the precomputed grasp tables, increasing the
likelihood that at least one of the grasps can be reached. Since
the EXTEND operation is not affected by the number of trees
being grown, incorporating multiple goals in the goal space
does not affect efficiency [12].

IV. MANIPULATION PLANNING HEURISTICS

We introduce several heuristics to the BiSpace planner in
order to improve planning efficiency. Each of these heuristics
assumes that every robot is composed of a mobile base and at
least one arm whose end-effector is used to make contact with
the target objects. Note that no assumptions are made about
the kinematics of any of the robot’s parts, and both humanoid

and wheeled robots are applicable in this framework (as we
demonstrate in Section V). Furthermore, each heuristic can
be automatically derived for any robot platform, making them
ideal for general use.

A. Base Reachability

Many researchers have shown that using some form of goal
biasing by modifying the configuration space sampling distri-
bution greatly reduces planning times. This section tackles the
problem of intelligently biasing configuration space samples
when the only goals given are the final grasps.

Given a target grasp g, we would like to quickly compute a
distribution Pg(p, θ) over the 2D placement (p, θ) of the base
of the robot for which g will be successful.

We first perform a kinematics workspace analysis for the
arm similar to [13]. Figure 5 shows the hand reachability
volume generated for the HRP2 humanoid robot. This was
computed by randomly sampling a 6D end-effector position
around the space of the humanoid’s shoulder and querying for
an IK solution. It can similarly be computed by randomly
sampling arm configurations and storing their resultant 6D
end-effector. We store all the valid 6D end-effector positions
in X = {(xq, xt)} where xq and xt are the rotation and
translation associated with the transformation of the end-
effector. Clearly, to succeed in the planning for a specific
grasp, the robot should move its body so that its reachability
volume coincides with the particular grasp.

Each grasp g represents an affine transformation where gt is
the translation and gq is the rotation. Our goal is to find similar
grasps to g in X and perform simple counting to extract a
probability of existence of an IK solution.

We begin by defining a rotation on the plane as Rn(θ) where
n is the normal vector to the plane the robot rotates on. The
group of all rotations on the plane is denoted by

Qn = {Rn(θ) | θ ∈ S1} (1)

We can now define an equivalence class of rotations that differ
only by a rotation about the plane as

gq Qn = {r ∗ gq | r ∈ Qn}. (2)

where ∗ denotes the action of applying one rotation after
another. We then define the equivalence class of all similar
grasps up to a rotation on the plane as

Xg = {(gq, (gq ∗ x−1
q)(xt)) | x ∈ X , xq ∈ gq Qn} (3)

where (gq∗x−1
q)(xt) transforms the position of the end effector

from the frame of the robot (in the reachability map) to the
frame of the grasp.

We compute equivalence classes for the entire set X by
sampling xi, storing its equivalence class Xi and continuing
sampling from X − X i. Doing this greatly reduces the number
of grasps from over 100, 000 in X to about 100 equivalence
classes. In practice, we accept grasps if they are within a
threshold of the rotation xq.

We now compute the inverse reachability volume Dg(p, θ)
for each equivalence class g. Note that each end-effector

Fig. 5. 6D hand reachability from a given base placement projected in 3D.
Shown are three different views of the reachability volume. Dark opaque areas
contain more reachable end-effector positions.

position xt where x ∈ Xg has been aligned to the frame of
the grasp g. p and θ are still in world coordinates and need
to be converted to the grasp coordinate system induced by g.
This is achieved by

Dg(p, θ) = { ‖xt − (Rn(θ) ∗ gq)−1(gt − p)‖ < ε | xt ∈ Xg}
(4)

Finally the inverse reachability map converts Dg(p, θ) into
a probability distribution as

Pg(p, θ) = exp

−ω

(∑
d∈Dg(p,θ) d

|Dg(p, θ)|

)2
 (5)

Views of the map for various equivalence classes g in a
sample scene for the HRP2 humanoid are shown in Figure 6.

To test the effectiveness of the inverse reachability map, we
randomly sampled base positions using Pg(p, θ) to see if they
would contain feasible IK solutions. Empirical results showed
that Pg(p, θ) was able to generate a feasible base placement
2.5 times faster than uniform sampling around the grasp.

B. Workspace Exploration

As humans, we employ different navigation strategies based
on our distance to a goal object. When a person is far away
from an object of interest, they care primarily about moving
their body in a direction that will get them close to the object.
When they are close, they usually plant their feet and use
their arms to make contact with the object. We can achieve
the same behavior in BiSpace by modifying the configuration
space distance metric such that

δ(q) = |ω(q)qarm|+ |qbase| (6)

where qarm is the degrees of freedom associated with the
arm. When the robot base is far away from the goal, the weight
ω should be small so that the robot takes bigger steps on
average. This suggests a simple monotonic function for ω:

ω(q) ∝ exp
{
−mini |goali −BasePosition(q)|2

2σ2

}
(7)

where σ is proportional to the length of the arm. Figure 7
demonstrates the behavior of BiSpace when using the modified

Fig. 6. Base placements derived from the goal space goals. As described in the text, these placements can be efficiently generated using the pre-computed
hand reachability volume.

Fig. 7. Comparison of how the distance metric can affect the exploration
of the arm. The top image shows the search trees (red/black) generated when
the distance metric and follow probability is weighted according to Equation
6. The bottom image shows the trees when the distance metric stays uniform
across the space; note how it repeatedly explores areas. The goal space trees
are colored in blue.

distance metric, and empirical results show that planning times
reduce by 20% when this metric is used.

C. Follow Probability

The farther the robot is away from the goal, the less chance
it will have of reaching it through FOLLOWPATH. The reason
is because FOLLOWPATH itself is not exploration-centric like
RRTs; it is meant for greedily approaching the goal when
the body and hand of the robot are relatively unobstructed by
complex environment obstacles. We propose two metrics to
compute the follow probability: the hand reachability volume
(Figure 5) or the distance falloff ω(q) (Equation 7). Both

metrics monotonically decrease as the robot gets farther from
the goal. The hand reachability is more informed since it is
a 6D table reflecting the real arm kinematics while ω(q) is
much easier to compute and often very effective (Figure 7).
The correct follow probability can have a dramatic effect on
planning times, sometimes reducing it by 60-70%.

V. RESULTS

For all planners, simulations, and real-robot experiments,
we used an open-source planning test-bed called OpenRAVE
[14]. There are few existing algorithms that work in high-
dimensional spaces and cope with goals that are not specified
explicitly in the configuration space, making direct comparison
of BiSpace a little challenging. We chose to compare BiSpace
with RRT-JT [9] and the two-tiered BiRRT approach described
in Section III. Whenever the robot is mobile in a test scene,
it adds 3 degrees of freedom to its configuration since its
base can translate and rotate freely on the floor. Because
randomized algorithms are known to have a long convergence
tail, we terminate the search after 10-20 seconds and restart.
This termination strategy produces much faster average times
for all algorithms. Note however that every termination counts
against the final planning time for that particular algorithm.
Termination times were uniquely set for each algorithm in or-
der to give it the fastest possible average time. Each algorithm
is run on each scene 16-30 times, and the average planning
time is recorded in Table I. Other parameters like RRT step
size and goal thresholds were kept the same for all algorithms.
To demonstrate the generality of the proposed algorithms, we
produced results using both the HRP2 humanoid and a WAM
arm loaded on a segway (Figure 8).

Since BiRRTs operate only in the full configuration space
it would be unfair if they were seeded with the final solutions
without any penalties. In order to make comparison fair, we
randomly sample full configuration solutions for a given target
grasp until a collision-free, feasible configuration is generated.
The recorded time is added to the final planning time. The
sampling takes somewhere from 2-9 seconds for HRP2 and
less than 1 second for the WAM on segway2.

2The large difference in sampling times is because the reachability area for
the WAM is much larger

Fig. 8. Scenes used to compare BiSpace, RRT-JT, and BiRRTs.

Fig. 9. Hard scene for BiSpace. The forward space tree (red) does not explore
the space since it is falsely led over the table by the goal space tree (blue).

BiSpace RRT-JT BiRRTs

HRP2 table (11 DOF, easy) 33 53 68
HRP2 table (11 DOF, harder) 45 528 78
HRP2 random (11 DOF) 37 170 40
WAM/segway (10 DOF) 17.25 25.2 22.93
WAM (7 DOF) 0.44 11 0.37

TABLE I
AVERAGE PLANNING TIME IN SECONDS FOR EACH SCENE.

A. HRP2

When planning for the HRP2 robot, we make the assump-
tion that its base can freely travel on the floor and the legs
do not need to move. Once BiSpace has planned a global
trajectory, later footstep planners can add the necessary leg
movements and dynamics to make the HRP2 move. In order
to allow for leg space, an invisible cylinder is super-imposed
over the lower body. Thus the planning space for HRP2 is
reduced to 11 degrees-of-freedom: 3 for the base, 1 for the
waist, and 7 for the arm. As can be seen from Figure 5, most
of the hand reachability lies shoulder height to the side of the
robot. This makes it hard for the robot to manipulate objects
in front of it at waist height, which is why all the planners
require significant planning time.

One of the hardest scenes for BiSpace is when the target
object is on a table and HRP2 has to circle the table to get to
it (Figure 9). Here, the goal space tree produces many false
paths directly over the table, which the HRP2 cannot follow to
the end. This process goes on until the rest of the configuration
space tree finally explores the space on the other side of the
table. This limitation is characteristic of bi-directional RRTs
also and provides a good example of why exploration is always
a crucial ingredient in sampling-based planners.

B. WAM

We tested two main scenes for the WAM: a living room
scenario where the WAM is mobile, and a scenario where
the WAM has to put cups in a dishwasher. The WAM arm
has 7 degrees of freedom and very high reachability making
planning very fast. BiSpace compares relatively well with
BiRRTs, however it is a little slower due to the extra overhead
in the FOLLOWPATH function. We also tested the entire grasp
planning framework using the BiSpace planner on a real WAM
arm setup (Figure 8). The WAM arm runs in real-time and can
compensate immediately for changes in the environment.

Fig. 10. Manipulation and Grasp Planning solutions for one of the test
scenes.

Fig. 11. The real WAM arm grasping mugs.

VI. CONCLUSIONS

We presented the BiSpace algorithm for efficiently produc-
ing solutions to complex path planning problems involving
a goal space that is different from the configuration space.
We used this algorithm to plan for several mobile robots to
perform manipulation tasks. One key feature of the grasp
framework we employed is that it makes very few assumptions
about how the robot should move to manipulate its target
object, which makes it ideal for autonomous robot scenarios.
Furthermore, we showed several heuristics that exploit various

information about the kinematic structure of the mechanism
to speed up planning. Finally we presented results for a real
WAM arm loading cups into a dishwasher rack.

VII. ACKNOWLEDGEMENTS

The authors would like to thank the Digital Human Research
Center for the allowing the use of the humanoid HRP2
model in these experiments. This material is based upon work
supported in part by the Quality of Life Technology Research
Center as part of the National Science Foundation under EEC-
0540865.

REFERENCES

[1] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” In-
ternational Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
2001.

[2] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots,” in Proceedings of the International
Symposium on Robotics Research (ISRR), 2003.

[3] J. Kim and J. Ostrowski, “Motion planning of aerial robots using
Rapidly-exploring Random Trees with dynamic constraints,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), 2003.

[4] G. Oriolo, M. Vendittelli, L. Freda, and G. Troso, “The SRT Method:
Randomized strategies for exploration,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2004.

[5] D. Ferguson and A. Stentz, “Anytime RRTs,” in Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IROS),
2006.

[6] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner,
“Grasp planning in complex scenes,” in Proceedings of IEEE-RAS
International Conference on Humanoid Robots (Humanoids), 2007.

[7] C. Klein and C. Huang, “Review on pseudoinverse control for use with
kinematically redundant manipulators,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 13, no. 3, pp. 245–250, 1983.

[8] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated
approach to inverse kinematics and path planning for redundant ma-
nipulators,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2006.

[9] M. V. Weghe, D. Ferguson, and S. Srinivasa, “Randomized path planning
for redundant manipulators without inverse kinematics,” in Proceedings
of IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids), 2007.

[10] J. Kuffner and S. LaValle, “RRT-Connect: An Efficient Approach to
Single-Query Path Planning,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2000.

[11] Z. Luo and P. Tseng, “On the convergence of coordinate descent method
for convex differentiable minimization,” Journal of Optimization Theory
and Applications, vol. 72, no. 1, pp. 7–35, 1992.

[12] K. Okada, T. Ogura, A. Haneda, J. Fujimoto, F. Gravot, and M. Inaba,
“Humanoid motion generation system on hrp2-jsk for daily life environ-
ment,” in International Conference on Machantronics and Automation
(ICMA), 2004.

[13] F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace
structure: Representing robot capabilities,” in Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IROS),
2007.

[14] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, July 2008.

