
Manipulation Planning with Caging Grasps
Rosen Diankov∗ Siddhartha S. Srinivasa† Dave Ferguson† James Kuffner∗

∗The Robotics Institute †Intel Research Pittsburgh
Carnegie Mellon University 4720 Forbes Ave.

Pittsburgh, PA, USA Pittsburgh, PA 15213, USA
{ridankov, kuffner}@cs.cmu.edu {siddhartha.srinivasa, dave.ferguson}@intel.com

Abstract— We present a novel motion planning algorithm
for performing constrained tasks such as opening doors and
drawers by robots such as humanoid robots or mobile manip-
ulators. Previous work on constrained manipulation transfers
rigid constraints imposed by the target object motion directly
into the robot configuration space. This often unnecessarily
restricts the allowable robot motion, which can prevent the robot
from performing even simple tasks, particularly if the robot
has limited reachability or low number of joints. Our method
computes “caging grasps” specific to the object and uses efficient
search algorithms to produce motion plans that satisfy the task
constraints. The major advantages of our technique significantly
increase the range of possible motions of the robot by not
having to enforce rigid constraints between the end-effector and
the target object. We illustrate our approach with experimental
results and examples running on two robot platforms.

I. INTRODUCTION

In this paper, we address the problem of a robot manipulating
an object whose motion in the world is constrained. Examples
of this interaction include turning a crank or handle, and
opening or closing a door, drawer, or cabinet. Previous work
on constrained manipulation typically utilize some form of
compliance control (e.g. [1]), in which constraints on the
object are transformed into task constraints on the end-effector
of the robot. Constraints are then enforced by maintaining
a fixed relative position and orientation (i.e. a rigid grasp)
between the object and end-effector. Unfortunately, for many
robots, such rigid grasp constraints can be overly restrictive.
For example, the opening of a door using a doorknob with one
rotational degree of freedom (DOF), imposes five constraints
on the robot end-effector if only rigid grasps between the
doorknob and end-effector are considered.

The key insight obtained through the experiments presented
in this paper, is that for a large class of constrained tasks, the
robot end-effector does not have to be rigidly attached to the
object throughout the entire motion (Fig.1). In fact, as long
as the object is caged [2], [3] by the end-effector, moving the
end-effector can produce a corresponding motion of the object.
In other words, there exists a grasp space the end-effector can
reside in such that the target object desired motion can be
achieved, while providing the robot a greatly expanded range
of allowable motion.

Relaxing task constraints through caging grasps has enabled
real-world implementations of constrained task execution us-
ing low DOF robots. We present experimental results on

Fig. 1. A robot hand opening a cupboard by caging the handle. Space of all
possible caging grasps (blue) is sampled (red) along with the contact grasps
(green).

the six-DOF Manus Assistive Robot Service Manipulator [4]
and the seven-DOF Barrett WAM [5], involving the tasks of
autonomously pulling doors and cabinets open at arbitrary
placements of the robot base. We compare our caged grasp
planning approach to a traditional planner that enforces rigid
task constraints. The results indicate that relaxing task con-
straints through caging grasps provide a much a greater motion
envelope for the robot as well as versatility in base placement.
This expanded range of allowable motions of the robot directly
results in: 1) improvements in the efficiency and the success
rate of planning for a variety of constrained tasks; 2) greater
success in executing the desired motion and achieving the final
object goal state.

The expanded range of motion comes at the cost of algo-
rithmic complexity. In the absence of a rigid grasp, care must

be taken to ensure that the object does not slip out of the
robot end-effector. Of greater concern is the fact that there
no longer exists a one-to-one mapping from robot motion
to object motion: since the object is loosely caged, there
can exist end-effector motions that produce no object motion,
and object motion without explicit end-effector motion. The
planner proposed in this paper uses a remarkably simple
yet effective technique to narrow the grasp set choices as it
moves towards the goal state. The planner works produces arm
motions that have a high probability of accomplishing the task
regardless of the uncertainty in the object motion.

II. RELATED WORK

Our work builds upon related work in two areas of manip-
ulation: caging, and task constrained manipulation.

Early work on caging [6] considered the problem of design-
ing algorithms for capturing a polytope using a given number
of points. Since then, there have been several applications
to cooperative manipulation as well as grasping. Pereira,
Kumar and Campos [7] proposed decentralized algorithms for
planar manipulation via caging using multiple robots pushing
the object. Rimon and Blake [2], [3] viewed caging as an
intermediate step to immobilizing an object and computed
caging sets that would lead to a pre-specified immobilization
grasp. Sudsang, Ponce, and Srinivasa [8] introduced a more
relaxed notion of capture regions, placing fingers where the
object could be prevented from escaping to infinity. A state-
of-the-art cage synthesis algorithm and survey of recent results
in caging may be found in Vahedi and Van der Stappen [9].

One of the first formulations of task-constrained manipula-
tion was provided by Mason [1] who observed that motion
along task constraints which produced configuration-space
surfaces or C-surfaces required the combination of position
control to move along the C-surface, and force control to
guarantee contact with the surface, which he termed compliant
motion. He proposed a formalism that combined the natural
constraints presented by the task and the desired goal trajectory
to produce control policies in terms of artificial constraints.
There has been a vast amount of literature following this work
[10], [11], [12], [13].

Usually solving a task constrained problem is tightly cou-
pled with simultaneously solving the compliant control and
visual servoing problems. [14] implement a behavioral module
that scripts the general task of opening a door while being
compliant to unknown variables at run-time like direction
to open the door and turn the handle. [15], [16] propose a
framework to simultaneously solve the task by controlling
forces and velocities through a visual servo loop.

Perhaps the work that is closest in spirit to ours is that of
Prats et. al. [17] who allow the end-effector to move freely
along certain directions during manipulations. One limiting
factor is that these directions are carefully chosen by hand to
ensure that they do not affect the overall task. In fact, end-
effectors do not always have to cage the object; as long as
the target object moves in the desired direction, just consid-
ering pushing can also increase the free space of the robot

[18]. We believe our work is a generalization of the above
ideas: instead of specifically parameterizing the relationship
between the end-effector and the object using simple rules,
we automatically generate a data-driven representation of this
relationship: the caging manifold.

The main contribution of our work is a relaxation of the
task constraint framework using caging and two algorithms
for planning under this framework. In this paper, we define
a cage as the condition where a robot hand constrains the
configuration space of an object to a finite volume. In our case,
we are interested in keeping the size of this volume small so
the object can be controlled with the hand. The configuration
space of the object itself can be one degree of freedom for a
door hinge, a pose in the 2D plane, or a pose in 3D.

III. RELAXED PROBLEM FORMULATION

We formulate the problem using the configuration space of
the robot q ∈ Q , the configuration space of the end-effector
g ∈ G, and the configuration of the constrained target object
ρ ∈ R. Each of these spaces is endowed with its corresponding
distance metric d : X × X → R.

We represent g, henceforth termed a grasp, as the 6D pose
of the end-effector in SE(3). Although our proposed method
is general enough to include joints in the grasp configuration,
we assume that the hand joints do not move while planning.
The assumption is mandated by our physical setup which does
not provide accurate synchronization of arm and end-effector
motion.

In the relaxed task constraint formulation, each target object
is endowed with a task frame which is rigidly attached to it,
and a set of grasps G represented in that task frame. The set
G is carefully chosen to ensure that any grasp is guaranteed
to cage the object. If we define Rg to be the set of target
configurations reachable under a grasp g, then the target at
configuration ρ is caged by the robot if ρ ∈ Rg ⊂ R and
every point on the the boundary of Rg is in collision with
the end-effector at pose g. Although this is a conservative
definition of a cage, it is necessary because end-effector is the
only physical body known with certainty and caging should
be environment independent. Note that a limiting case of a
cage is a form closure grasp where Rg = {ρ}.

In congruence with the traditional task constraint formula-
tion, we describe the pose of grasps in G with respect to a
coordinate frame that is rigidly attached to the object, termed
the task frame. A transform Tρ relates the task frame at an
object configuration ρ to the world reference frame. The utility
of this representation arises from the observation that, under
a rigid grasp, the pose of the end-effector is invariant in the
task frame. This allows us to compute and cache G offline,
thereby improving the efficiency of the online search. At any
configuration ρ, we denote the grasp set in the world frame
by

TρG = { Tρg | g ∈ G }. (1)

Given a grasp g we define the set of (inverse kinematics)

robot configurations q that achieve g as

IK(g) = { q | g = FK(q) } (2)

where FK(q) is the forward kinematics transforming robot
configuration to a grasp. One of the relaxed planning assump-
tions is that the end-effector of any configuration of the robot
always lies within the grasp set G with respect to the task
frame. Because this couples the motion of both the object and
the robot during manipulation, their configurations need to be
considered simultaneously. Therefore, we define the relaxed
configuration space C as

C = {(ρ, q) | ρ ∈ R, q ∈ Q, FK(q) ∈ TρG} (3)

We define the free configuration space Cfree ⊆ C as all states
not in collision with the environment, the robot, or the object.
Given these definitions, the relaxed task constraint problem
becomes:

Given start and goal configurations ρstart and
ρgoal of the object, compute a continuous path
{ρ(s), q(s)}, s ∈ [0, 1] such that

ρ(0) = ρstart (4)
ρ(1) = ρgoal (5)

{ρ(s), q(s)} ∈ Cfree (6)
FK(q(1)) ∈ Tρ(1)Gcontact (7)

Eqn.4 and Eqn.5 ensure that the target object’s path starts
and ends at the desired configurations. Eqn.6 forms the crux
of the relaxed task constraint planning problem. Because the
caging criteria dictates that each grasp be in the grasp set
G, Eqn.6 ensures that any robot configuration q(s) produces
a grasp FK(q(s)) that lies in the world transformed grasp
set Tρ(s)G. Eqn.7 constrains the final grasp to be within a
contact grasp set Gcontact ⊆ G. This set is formally defined
in Section IV. Informally, any grasp in this set is in contact
with the object and guarantees that the object will not move
away from the goal.

While the above equations describe the geometry of the
problem, we make the following assumptions about the
physics of the problem. These assumptions constrain the
automatically generated grasps we use for planning as well
as the motion of the robot and object during manipulation.

Our analysis is purely quasi-static. The robot moves slow
enough that its dynamics are negligible. Furthermore, we
assume that the object’s motion is quasi-static as well. This
can be achieved in practice by adding a dash pot to the hinges,
damping their motion, or by a sufficient amount of friction in
the case of an object being dragged across a surface. We also
assume that we have access to a compliant controller on the
robot. Under this assumption, we are guaranteed that the robot
will not jam or exert very large forces on the object being
manipulated. For our robot experiments, we implemented a
compliance controller on the WAM, greatly facilitated by the
cable-driven transparent dynamics of the robot. The Manus
arm has built-in compliance since it was originally designed
for wheel-chair users and close human interaction.

Fig. 2. A dainty grasp that was rejected by the random perturbation in the
grasp exploration stage, even though it mathematically cages the handle.

IV. GRASP SETS

We generate the grasp set G by exploring the space around
an initial seed caging grasp g, producing a collection of
candidate grasps. Each candidate grasp that cages the object
is added to G. By using caging grasps rather than grasps that
fix the target object’s configuration through contact force, we
are able to provide the manipulator with significantly more
flexibility in accomplishing the task while still guaranteeing
the object cannot escape from the end effector’s control.

Additionally, to guarantee that the object is eventually held
and maintained at its desired final configuration, we compute
the set Gcontact comprised of grasps in G that are both in
contact with the object and do not allow any object motion.

The only human input to the entire algorithm is the initial
seed grasp g. All subsequent steps are completely automated.

A. Generating the Grasp Set

Given a seed grasp g, we use Rapidly-exploring Random
Trees (RRTs) [19] to explore the configuration space of the
end-effector. In our experiments, we parametrize this space by
freezing the joints of the end-effector and by parameterizing
the end-effector pose in SE(3) with three dimensions for
translation and four dimensions for rotations represented as
quaternions. The choice of exploration strategy is not central
to our algorithm. In practice, we found that the RRT explored
the constrained space quickly and efficiently.

Specifically, the RRT is run with a particular target config-
uration and only considers collisions between the object and
the end-effector. From an initial grasp g, the RRT produces
collision-free candidate grasps. A candidate grasp is added to
G only if it passes two tests. First, we test for caging by mov-
ing choosing a random direction in the object’s configuration
space and moving small discrete steps along it to test if it
can escape1. Second, we check for robustness by randomly
jittering the grasp and re-testing for caging (Fig.2). Because

1Although this test is conservative, it produces a lot of caging grasps. A
real caging test would have to run a sophisticated motion planner.

Fig. 3. Grasp Set generated for the Manus Hand.

the collision free caging grasps can be dependent on the
configuration of the target, the grasp generation process runs
multiple RRTs at multiple target configurations. The union of
all the computed grasps is taken and a subset spanning the
grasp space is extracted.

B. Generating a Contact Grasp Set

In order to guarantee that an end-effector pose is able to
move the target object to its final destination, the end-effector
has to exert forces through contact to keep the target object
close to that configuration. We call this set Gcontact.

A valid contact grasp is one where we are unable to move
the object a small step ε without colliding with the grasp.
Thus, the contact grasp approaches form-closure. This may
be formalized as

Gcontact = {g ∈ G|∀ρ ∈ R, d(RTρg) < ε} (8)

where

d(R) = max
ρ1∈R,ρ2∈R

d(ρ1, ρ2) (9)

is the maximum distance between any two configurations in
R. Fig.1 shows the results of the RRT exploration, pruning,
and finally the grasps picked for the contact set. Fig.3 show
the grasp set computed for the Manus Hand.

V. PLANNING WITH RELAXED CONSTRAINTS

We describe two planning algorithms to solve the relaxed
constraint problem: a discretized version and a randomized
version. The randomized algorithm is more flexible and makes
less assumptions about the problem statement, however the
discretized algorithm is simple to implement and useful for
explaining the concepts behind relaxed planning (as well as
the motivation for a randomized algorithm).

Fig. 4. The basic framework used for planning discrete paths {qi}|n1 in robot
configuration space to satisfy paths {ρi}|n1 in object configuration space.

A. Discrete Formulation

The underlying assumption of the discrete formulation is
that a desired path of the target object is specified. Specifying
the path in the object’s configuration space as an input to
the planner is trivial for highly constrained objects like doors,
handles, cabinets, and levers. The configuration space of these
objects is one dimensional, so specifying a path from a to b
is easily done by disretizing that path into n points. In the
more general case where an object’s configuration space can
be more complex, we denote its desired path as {ρi}|n1 where
each of the configurations ρi have to be visited by the object
in that order.

The discrete relaxed constrained problem is then stated as:
given a discretized object configuration space path {ρi}|n1 , find
a corresponding robot configuration space path {qi}|n1 such
that

∀1≤i≤n (ρi, qi) ∈ Cfree (10)
FK(qn) ∈ Tρn

Gcontact (11)
∀1<i≤n d(FK(qi−1), FK(qi)) < ε1 (12)

∀1<i≤n d(qi−1, qi) < ε2 (13)

where Eqn.10 and Eqn.11 constrain the end-effector to lie
in the current grasp set defined for the object and Eqn.11 guar-
antees the final grasp is in contact. To satisfy the continuity
constraint on the robot configuration space path, Eqn.12 and
Eqn.13 ensure that adjacent robot and grasp configurations are
close to each other.

A straightforward discrete planning approach to solve this
problem is provided in Algorithm 1. We begin by first running
a feasibility test through the entire object trajectory. This step
is also used to initialize the grasp and kinematics structures
used for caching. We assume an inverse kinematics solver is
present for every arm. Furthermore, if the arm is redundant
the solver will return all solutions within a discretization level.
We compute the set of contact grasps that will keep the object
in form-closure at its desired final destination ρn (line 11).
For each grasp in this set we compute IK solutions for the
complete configuration of the robot, and for each IK solution
we attempt to plan a path through configuration space that

Fig. 5. The scenes used to test the algorithm: 6DOF Manus Arm, 6DOF Puma arm, and 7DOF WAM arm in an ’easy’ and a ’harder’ scene

Algorithm 1: Q← DISCRETESEARCH()

for i = 1 to n− 1 do1

Gi ← TρiG2

for g ∈ Gi do3

if (IKi,g ← IK(g)) 6= ∅ then4

break5

Gi.remove(g)6

end7

if Gi = ∅ then8

return ∅9

end10

for g ∈ Tρn
Gcontact do11

for q ∈ IK(g) do12

Qnext ← DISCRETEDEPTHFIRST(q, n− 1)13

if Qnext 6= ∅ then14

return {Qnext, q }15

end16

end17

return ∅18

tracks the object path {ρi} using depth first search (line 13)2.
Fig.4 provides a diagram of the discrete search framework.

Given an object path {ρi}|n1 we search for a robot path {qi}|n1
that consists of a sequence of robot configurations qi, 1 ≤ i <
n such that FK(qi) ∈ Tρi

G and FK(qn) ∈ Tρn
Gcontact.

Each of these configurations qi is generated as an IK solution
from one of the grasps in the grasp set TρiG. The depth first
search process takes a robot configuration at a time step j
and calculates all the robot configurations that correspond to
valid grasps at time j − 1 (i.e. are members of set Tρj−1G),
then recursively processes each of these configurations until a
solution is found.

B. Randomized Formulation

There are several disadvantages to the discretized algorithm.
First, it is highly dependent on the discretization level of the
grasp set and IK solver. For robots with six degrees of freedom

2This depth first search expands states in the same order as A* would using
a heuristic function based on (an underestimate of) the target object distance
to goal.

Fig. 6. Comparison of fixed feasibility regions (left) and relaxed feasibility
regions (right) for each scene.

Fig. 7. WAM arm used to open a kitchen cupboard.

or less, enumerating all IK solutions isn’t a problem. However,
as soon as the joints increase or a mobile base is considered,
the discretization required for IK(g) to reasonably fill the
null space grows exponentially. Second, the desired object
trajectory is fixed, which eliminates the possibility of moving
the door in one direction and then another to accomplish the
task (see [12] for an example where this is required).

To overcome these limitations, we also applied a random-
ized planner to the problem. We chose the Randomized A*
algorithm [20], which operates in a similar fashion to A*
except that it generates a random set of actions from each
state visited instead of using a fixed set. Randomized A*
is well suited to our current problem because it can use
the target object distance to goal as a heuristic to focus its
search, it can guarantee each state is visited at most once,
it does not need to generate all the IK solutions for a given
grasp, and it can return failure when no solution is possible.
The key difference between Randomized A* and regular A*
is the sampling function used to generate neighbors during
the search. For our relaxed constraints problem the task of
this sampling function is to select a random configuration
(ρnew, qnew) and a random grasp gnew ∈ Tρnew

G such that
qnew ∈ IK(gnew). Ideally, this should be done efficiently
without wasting time considering samples previously rejected
for the same configuration. The A* criteria will ensure that the
same configuration isn’t re-visited and that there is progress
made towards the goal, so the sampling function needs only
return a random configuration in Cfree around the current
configuration (ρ, q) as fast as possible.

Algorithm 2 provides our implementation of the sample
function. It first samples a target object configuration ρnew

close to the current configuration ρ (line 3), then searches
for feasible grasps from the new grasp set TρnewG′ (line
6), and then samples a collision-free IK solution close to q
(line 8). In order to guarantee we sample the entire space,
RANDOMCLOSECONFIG should discretize the sampling space
of the target configuration so that the number of distinct ρnew

that are produced is small. This is necessary to ensure that
sampling without replacement is efficient. Each time a sample
is chosen (line 6), it is removed from Gρnew so it is never
considered again, an operation that takes constant time. If the
target is close to its goal then G′ is the contact grasp set
Gcontact, otherwise G′ is the regular grasp set G. Once a

Algorithm 2: {ρnew, qnew} ← SAMPLENN(ρ, q)

G ← ∅, qnew ← ∅1

while qnew = ∅ do2

ρnew ← RANDOMCLOSECONFIG(ρ)3

if not EXIST(Gρnew
) then4

Gρnew
← Tρnew

G′5

gnew ← SAMPLEWITHOUTREPLACEMENT(Gρnew)6

if gnew 6= ∅ then7

qnew ← SAMPLEIK(gnew, q)8

else if CHECKTERMINATION() then9

return {∅, ∅}10

end11

return {ρnew, qnew}12

Discrete Randomized

6DOF Manus Arm 441% 503%
6DOF Puma Arm 130% 126%
7DOF Barrett WAM 13% 24%
7DOF Barrett WAM (Harder) 163% 162%

TABLE II
INCREASE IN FEASIBILITY SPACE WHEN USING RELAXED PLANNING COMPARED TO

FIXED-GRASP PLANNING.

grasp is found, SAMPLEIK samples the nullspace of the IK
solver around q until a collision-free solution is found. If not,
the entire process repeats again. If all grasps are exhausted
for a particular target configuration, the sampler checks for
termination conditions and returns false (line 9).

VI. EXPERIMENTS

The robotic simulation environment we used to perform all
planning, testing, and real robot control is OpenRAVE [21], the
Open-Source Cross-Platform Robotics Virtual Environment.
To test the performance of the algorithm, the planning times
and feasibility regions are calculated for three different robots
in various scenes (Fig.5, Fig.7). All the handles of the target
objects are measured carefully from their real-world counter-
parts. The tasks are as follows:

• The Manus Arm is required to open the door 90 degrees.

Trials Grasp Set Size Discrete (Successes) Discrete (Failures) Randomized (Successes) Randomized (Failures)

6DOF Manus Arm 7784 550 0.235 s 0.234 s 0.143 s 0.23 s
6DOF Puma Arm 6755 300 1.49 s 0.043 s 1.83 s 0.028 s
7DOF Barrett WAM 2734 276 10.5 8.43 10.5 37.4
7DOF Barrett WAM (Harder) 2422 123 0.116 s 0.021 s 0.209 s 0.029 s

TABLE I
STATISTICS FOR THE SCENES TESTED SHOWING AVERAGE PLANNING TIMES (IN SECONDS) AND SIZE OF THE GRASP SETS USED.

Fig. 8. WAM arm autonomously opening a cupboard, putting in a cup, and closing it. Wall clock times from start of planning are shown in each frame.

• The Puma Arm is required to open the cupboard 115
degrees.

• The WAM arm is required to open the closer cabinet 90
degrees and the farther cabinet 60 degrees.

In each scene, the robot is randomly positioned and oriented
on the floor, and then the planners are executed. Thousands of
random positions are tested in each scene to calculate average
running times (Table I). The parameters for the randomized
algorithm stayed the same across all robots. Note that the
planning times for the easier WAM scene are much higher
than the rest of the scenes. This shows that the more open the
space is, the longer it takes to search for all possible solutions,
and especially longer to declare failure when a solution doesn’t
exist.

To show that relaxed grasp sets really do increase the
regions the arm can achieve its task from, we compare the
feasibility regions produced with the relaxed grasp set method
and the fixed grasp method. The fixed grasp method uses a
single task-frame grasp throughout the entire search process.
To make things fair, we try every grasp in Gcontact before
declaring that the fixed grasp method fails. Table II shows
how many times the feasibility region increased for the relaxed
methods compared to the fixed method. As expected, the
lower dimensional manipulators benefit greatly from relaxed
task constraints. Furthermore, the door can be opened much
further using the relaxed approach than with the fixed grasp
method. The randomized algorithm’s improvement over the
fixed method is occasionally less than that of the discrete

algorithm because we are using early termination criteria;
running the algorithm for longer produces feasibility regions
that are greater than or equal to what the discrete algorithm
produces. Fig.6 shows the feasibility regions in each scene
between relaxed grasps and fixed grasps.

Real experiments were done on two robots: the Manus Arm
on a wheelchair opening a door (Fig.9), and the Barrett WAM
putting cups in a cupboard (Fig.8). It is impossible to open the
door so wide with the Manus Arm without considering relaxed
grasps because the reachability is so low. The experiment we
performed with the WAM is to autonomously open a cabinet,
put a cup inside it, and close it. The robot autonomously
planned for collision-free and reachable grasps when picking
up the cup using the grasp planning framework proposed by
[22]. It should be noted that the final destination is very
tight, but the planner was able to find a solution and the
robot successfully completed execution of the entire task in
a combined time of 1 minute and 58 seconds.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a motion planning method for con-
strained manipulation tasks that combines object “caging
grasps” and efficient search algorithms to produce motion
plans that satisfy the task constraints. The effectiveness of
our approach has been illustrated by experimental results
on two different real-world autonomous manipulation tasks.
Relaxing the task constraints can give the arm more chances
to finish the task without relying on synchronization with

Fig. 9. Manus arm on a wheel chair opening a door.

Fig. 10. The humanoid robot HRP-2 opening a cupboard.

the mobile base. This method is especially useful when the
robot’s own localization is not accurate because it allows
for the robot to control how far away it is from collisions.
Furthermore, these results can be generalized to arbitrary
pushing tasks where the robot ”cages” certain directions of
the object configuration space. Our experimental results have
shown that planning using caging grasps can be implemented
efficiently, and can result in improved overall planning times
and execution performance. The proposed algorithm generally
applies to a large class of manipulators, and can easily be
adapted for the dynamic actions of humanoid robots (Fig.10).

VIII. ACKNOWLEDGEMENTS

This project is partially supported by the Quality of Life
Technology Center and the Personal Robotics project at Intel
Research Pittsburgh. We are grateful to the HERL Pittsburgh
Lab for the wheel chair hardware, Exact Dynamics BV for
the Manus arm hardware. We also want to thank Mike Vande
Weghe for the WAM hardware support and his invaluable
input.

REFERENCES

[1] M. Mason, “Compliance and force control for computer-controlled
manipulators,” vol. 11, no. 6, 1981, pp. 418–432.

[2] E. Rimon and A. Blake, “Caging 2d by one-parameter two-fingered
gripping systems,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 1986.

[3] E. Rimon, “Caging planar bodies by one-parameter two-fingered grip-
ping systems,” The International Journal of Robotics Research, vol. 18,
pp. 299–318, 1999.

[4] “http://www.exactdynamics.nl.”
[5] “http://www.barrett.com.”
[6] W. Kuperberg, “Problems on polytopes and convex sets,” in DIMACS

Workshop on Polytopes, 1990.
[7] G. A. S. Pereira, V. Kumar, and M. F. M. Campos, “Decentralized

algorithms for multirobot manipulation via caging,” in Proceedings of
the Workshop on the Algorithmic Foundations of Robotics, 2002.

[8] A. Sudsang, J. Ponce, and N. Srinivasa, “Algorithms for constructing
immobilizing fixtures and grasps of three-dimensional objects,” in In
J.-P. Laumont and M. Overmars, editors, Algorithmic Foundations of
Robotics II, 1997.

[9] M. Vahedi and A. F. van der Stappen, “Geometric properties and
computation of three-finger caging grasps of convex polygons,” in
Proceedings of the 3rd Annual IEEE Conference on Automation Science
and Engineering, 2007.

[10] O. Khatib, “A unified approach to motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, 1987.

[11] M. H. Raibert and J. J. Craig, “Hybrid position/force control of manip-
ulators,” ASME Journal of Dynamic, Measurements and Control, vol.
103, 1981.

[12] M. Stilman, K. Nishiwaki, and S. Kagami, “Learning object models
for humanoid manipulation,” in IEEE International Conference on
Humanoid Robotics, 2007.

[13] J. de Schutter, T. de Laet, J. Rutgeerts, W. Decre, R. Smits, E. Aertbelien,
K. Claes, and H. Bruyninckx, “Constraint-based task specification and
estimation for sensor-based robot systems in the presence of geometric
uncertainty,” International Journal of Robotics Research, vol. 26, no. 5,
pp. 433–455, 2007.

[14] A. Jain and C. C. Kemp, “Behaviors for robust door opening and door-
way traversal with a force-sensing mobile manipulator,” in Proceedings
of the Manipulation Workshop in Robotics Science And Systems, 2008.

[15] M. Prats, P. J. Sanz, and A. P. del Pobil, “A control architecture for
compliant execution of manipulation tasks,” in Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IROS),
2006.

[16] M. Prats, P. Martinet, A. P. del Pobil, and S. Lee, “Vision/force control
in task-oriented grasping and manipulation,” in Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IROS),
2007.

[17] M. Prats, P. J. Sanz, and A. P. del Pobil, “A sensor-based approach
for physical interaction based on hand, grasp and task frames,” in
Proceedings of the Manipulation Workshop in Robotics Science And
Systems, 2008.

[18] V. Ng-Thow-Hing, E. Drumwright, K. Hauser, Q. Wu, and J. Wormer,
“Expanding task functionality in established humanoid robots,” in Pro-
ceedings of IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2007.

[19] J. Kuffner and S. LaValle, “RRT-Connect: An Efficient Approach to
Single-Query Path Planning,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2000.

[20] R. Diankov and J. Kuffner, “Randomized statistical path planning,” in
Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS), 2007.

[21] R. Diankov, “http://openrave.programmingvision.com.”
[22] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner,

“Grasp planning in complex scenes,” in Proceedings of IEEE-RAS
International Conference on Humanoid Robots (Humanoids), 2007.

