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Abstract— We present a vision-centric manipulation frame-
work for reliably performing reach-and-grasp tasks in everyday
environments. By combining grasp planning and visual feed-
back algorithms, and constantly considering sensor visibility,
the framework can recover from sensor calibration errors and
unexpected changes in the environment. Although many current
robot systems include planning and vision components, these
components are treated independently, which reduces the capabil-
ity of the system from making informed decisions. Our proposed
framework incorporates information in a data-driven way from
both planning and vision modalities during the planning and
execution phases of the task. The planning phase generates a
plan to move the robot manipulator as close as safely possible
to the target object such that the target is easily detectable
by the on-board sensors. The execution phase is responsible
for continuously choosing and validating a grasp for the target
while updating the environment with more accurate information.
We stress the importance of performing grasp selection for the
target during visual-feedback execution because more precise
information about the target’s location and its surroundings is
available. We evaluate our framework on several robot platforms
in simulation.

I. INTRODUCTION

Manipulating objects in everyday environments is a funda-
mental task for any autonomous robot. The key to successful
manipulation is to choose a grasping strategy and move to
observe the target of the task so that execution is informed
of the surroundings. Reaching and grasping the target object
requires multiple pieces of information including: knowledge
of the robot kinematics, robot geometry, the gripper capabil-
ities, the available sensor modalities, the grasping strategy
of the target, and the environment obstacles that must be
avoided. In a successful system, each of these sub-components
should build a task-specific model during an offline training
process, and then extensively use this model for the online
robot execution process. As components start being introduced
in a robot system, the interplay between each other becomes
very important to the success of the task.

Usually robot systems treat the grasp selection and motion
planning stages independently of the sensing capabilities of the
robot, leading to the ubiquitous Sense→Plan→Execute robot
strategy. In the first stage, all the sensors agree on a common
snapshot of the environment and pass this information to
the planners. The planning process then selects target grasps
and computes possible configuration goals for the robot [1,
2]. A global plan for the geometric motion of the robot is
then created by enforcing any task specific constraints. An
execution monitor [3] takes this global plan and uses sensor

Fig. 1. Comparison of a commonly used grasping framework with the
proposed framework. Because the grasp selection phase is moved to the visual
feedback step, the proposed framework can take into account a wider variety
of errors during execution. The robot platforms used to test this framework
(bottom).

feedback loops that follow the plan while quickly correcting
for errors due to uncertainty, dynamics, or unexpected occur-
rences [4, 5, 6]. Because the feedback loop relies on a global
plan and needs to run faster than 5Hz, it commonly takes the
form of a controller that greedily minimizes an error metric
using the partial derivatives of that metric with respect to the
control inputs. In this three-stage architecture, the gap between
the motion planning stage picking the grasps and the sensor
feedback stage attempting to reach those grasps can lead to
an early commitment of a global plan that can cause failures
in the final execution stage. Although these architectures have
been shown to work in many scenarios [7], the performance
of such systems still do not match the performance of a
person executing the same task; particularly, considering the
combination of the visibility capabilities from the planning
capabilities can increase robot execution.

In the standard visual-servoing formulation, the robot goal
is defined with respect to a task frame; as new information
comes in, the task frame is updated and the robot attempts to
get closer to the goal defined in this frame using gradient
descent techniques [8, 9, 10]. Here the entire environment
with obstacle avoidance is rarely considered because of the
computational complexities. It is also hard for such gradient
descent techniques to consider non-linear constraints like
properly maintaining sensor visibility and choosing grasps.
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Fig. 2. For every camera location, the object is projected onto the camera
image and rays are uniformly sampled from its convex polygon. If a ray hits
an obstacle, the camera sample is rejected.

Recently, a framework for combining randomized planners
and visual servoing techniques has been proposed [9], which
maintains constraints using a planner and locally modifies this
trajectory in real-time using visual servoing. Our integrated
framework is different from past research in that it re-analyzes
the updated environment and grasp selection during the visual-
feedback stage.

We propose a framework for reaching tasks that avoids
early commitment of a global plan by delaying the decision of
the grasp until the execution phase. We particularly focus on
the interplay between manipulation planning and the visibility
capabilities of a camera attached to the robot gripper. Figure
1 compares the structure of our framework with previous
manipulation systems. The fundamental observation driving
our framework is that a robot cannot accurately determine
the state of the target objects when its camera is far away;
therefore, the robot needs to move closer to the object to
guarantee accuracy. Systems that combine motion planning
with visual servoing usually assume that the grasps remain
valid with respect to the task frame, and continue to servo until

the robot cannot continue any further. Because the scene can
drastically change, the original grasp with respect to the target
coordinate system may not be physically possible anymore.
For example, it is possible that the new object location can
cause parts of the robot to collide with environment obstacles
when trying to maintain the previous grasp. There are two
parts of the framework we analyze in this paper: the initial
motion planning for that takes into account visibility, and the
vision-feedback phase for real-time adjustments to the object
pose.

II. PLANNING FOR VISIBILITY

Before entering the visual feedback loop, the robot should
move itself so that its camera has good observability of the
target object. This movement should consider the kinematics
of the robot, the environment obstacles, and the sensor place-
ment on the robot. It should not, however, consider how to
grasp the object. By not considering grasping at this stage, we
only need to know a rough location of the object. Furthermore,
the required precision of robot execution is reduced because
only the environment obstacles need to be considered. The
planner can first set a preshape for the gripper that must be
maintained throughout the entire time, and only plans for the
robot configurations responsible for moving the arm in the
environment.

A. Sampling Valid Camera Locations

The first step in planning for the robot approach is to find
all camera locations that are within the detection extents of
the target object and can observe it with no environment
occlusions.

1) Detecting Environment Occlusion: To check if the en-
vironment obstructs the target object when viewed from a
specific camera location, we shoot all rays from the camera
toward the object and check if they hit an obstacle before
they hit the object. In the past, this was done by rendering
the image and letting the graphics hardware perform the
depth computations [11]. For speed and much simpler parallel
processing capabilities, we randomly sample the projected
object surface and check the ray obstructions using a collision
checker (Figure 2).

Consider a pin-hole camera at some transformation Tcamera

with intrinsic matrix K, and let O represent the object points
in the world. The set of all projected points on O in the camera
image is

proj(T,O) = {proj(K T p) | p ∈ O}. (1)

Each of these points represents a ray coming from the
camera. To check if any part of O is obstructed by the
environment, we sample the projected region of the object
surface and compute the rays to the object using

R(T ) = K−1 SampleArea(proj(T,H(O))), (2)

where H computes the convex hull and SampleArea uni-
formly samples the area of the convex hull at a dense enough

647



level not to miss small objects. The object is fully visible in
the camera if all rays hit the object and H(proj(T,O)) is
fully inside the camera image (Figure 2). When the projected
region of O is convex, we can greatly speed up sampling the
rays in the image. Therefore, we replace O with its convex
hull during environment occlusion checking.

The problem becomes more involved when the robot links
are considered since the robot can block the camera view
depending on its current configuration. Therefore, environment
occlusions have to be checked after a robot configuration
candidate is computed. Certains links like the gripper of the
robot will be constantly visibile in the camera and will produce
a mask in the camera image that the target object should
never intersect with. When looking at the scene through the
camera image, the gripper should produce a constant mask,
which blocks the camera from observing that part of the
environment (Figure 3). The camera sampling problem then
becomes sampling robot goal configurations such that the
attached camera meets the environment occlusion constraints
and the target object in the camera image lies outside of the
gripper mask.

To create a very fast sampling function, we compute the
convex polygon of the largest free space in the camera image
that does not contain the gripper mask (Figure 3). Computing
the largest collision-free convex hull is a hard problem [12,
13], so we use a randomized algorithm that samples supporting
points on the boundary of the gripper mask and checks if the
resulting convex polygon is free. Depending on the number of
supporting points, running this procedure for an hour should
yield a good approximation of the largest volume.

A valid camera sample has to fully contain the projection
of the object in the free convex region, which is effectively
equivalent to checking if the object itself lies in a 3D cone
with a convex base. Furthermore, this 3D cone represents
the target camera visibility volume and can be treated as a
convex hull. The problem is simplified to checking if the
object is fully inside this convex hull:H(proj(Tcamera,O)) ⊆
H(RobotMask). However projection is usually slow, so we
perform the convex checking in 3D space by converting all
2D lines of the convex polygon in the camera image to 3D
planes:

H(O) ⊆ V(RobotMask,K, Tcamera) (3)

In order to simplify sampling robot configurations, we
specifically consider cameras attached to the gripper where
the manipulator inverse kinematics equations can be directly
applied to move the arm to a desired camera location.

2) Vision Algorithm Detectability Extents: Each vision al-
gorithm dictates the camera positions in which the object can
be successfully observed in. We can automatically compute
these detection extents by waving the camera around the object
and recording all extracted object poses (Figure 4). This data
is parameterized with respect to the direction of the camera
and its distance to the object. Since we assume a pin-hole
camera model, the in-plane image offset and the camera roll

Mitsubishi PA-10 Barrett WAM
Real Robot

Real Gripper with Camera

Virtual Gripper Camera with Camera

Real Camera View

Gripper Mask with Convex Free Space

Fig. 3. The real robots with the a close-up simulation of the wrist cameras
are show in the top two rows. Given the real camera image, the silhouette of
the gripper (bottom) is extracted (black) and sampled (red), then the biggest
convex polygon (blue) not intersecting the gripper mask is computed.
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(a) (b) (c)
Fig. 4. Camera locations that can successfully extract the object pose are saved (a), this data is then filtered and the isosurface is extracted (b), finally the
space is uniformly sampled to get the object detection extents (c).

do not affect detectability as much, so we parameterize the
extents with respect to the distance to the object λ, and the
direction of the camera view axis v.

Given a real scene, the first task is to sample a camera
transformation with respect to the object coordinate system
so that object detectability is guaranteed. We first sample the
camera distance λ and direction v from the extents model.
Then given a random roll angle θ, the camera rotation in the
object coordinate system is computed by

R(v, θ) = Rodrigues(

0
0
1

×v, cos−1 vz)

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


(4)

where Rodrigues(v, α) is the rotation around an axis v
by angle α. To compute the camera translation, we constrain
the ray pointing towards H(RobotMask) to point toward the
object origin. The camera translation in the object coordinate
system then becomes

−λ R(v, θ)K−1 H(RobotMask)center. (5)

3) Sampling with Robot Kinematics: Algorithm 1 shows
how to efficiently sample a camera location such that all
the constraints are maintained. The algorithm first samples
the transformation of the camera outlined above using the
detectability extents model specific to the vision algorithm.
Then the object is checked if it lies completely inside the
camera visibility volume V computed by the gripper mask. If
this test passes, we sample inverse kinematics solutions of the
manipulator until we find a collision free robot configuration.
For every solution, we set the robot configuration q and check
if any part of the environment or robot is occluding the object
using ONOBJECT. Since we need to guarantee that a ray r
will hit the object if there is nothing occluding it, ONOBJECT
works directly on H(O) as shown in Figure 2.

To achieve faster sampling times, we perform the following
optimizations:

Algorithm 1: q ← VISIBLECONFIGURATION(O)

while {v, λ} ← SAMPLEDETECTIONEXTENTS() do1

Tcamera ←2

TO

[
R(v, θ) −λ R(v, θ)K−1 H(RobotMask)center

0 1

]
if H(O) ⊆ V(RobotMask,K, Tcamera) then3

for q ← INVERSEKINEMATICS(Tcamera) do4

if ∀r∈R(T−1
camera) ONOBJECT(r, q,H(O)) then5

return q6

end7

end8

• SAMPLEDETECTIONEXTENTS samples without replace-
ment.

• Once we have the camera transform we check collision
with just the gripper before going through the full inverse
kinematics computation. Because the gripper preshape is
set, all the child link transforms of the gripper can be
determined regardless of the arm joints.

B. Motion Planning

In order to plan to the sampled camera regions, we use a
slightly modified BiRRT [14]. Instead of fixing the number
of robot goal configurations sampled using Algorithm 1, we
randomly add these samples with a given probability during
the searching process. This allows all possible goals to be
considered while not demanding their full computation during
planner initialization.

III. VISUAL-FEEDBACK WITH GRASP SELECTION

One necessary component for robust behavior is a real-
time visual-feedback phase that can compensate for changes
in the environment. The purpose of this phase is to update the
virtual world quickly and to decide if the current plan is still
valid or needs to change. In order to motivate the necessity
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for grasp selection in the visual feedback phase, consider the
example of a robot attempting to grasp one of two objects in
a scene. When the robot first starts the manipulation planning
phase, it computes that the objects are 20mm apart and decides
that it can safely put one of its fingers between the objects.
As the robot switches to its visual-feedback loop and starts
getting better measurements of the objects, it sees they are
actually 5mm apart and that it cannot put its finger between
the two objects. If the visual-feedback phase does not consider
the grasp selection process during visual feedback, it cannot
change grasps to compensate for this error and will have to
restart the entire planning process from the start.

To compensate for uncertainty and large changes in the
environment, we propose a visual feedback framework that in-
cludes grasp selection and maintains visibility constraints.The
grasp selection process takes into account both the collision
obstacles and the current robot position. The camera in every
new configuration is validated using the methods in the previ-
ous section. Although many grasps could be collision-free and
reachable from the robot’s perspective, the selection process
is more successful when they are prioritized depending on the
current environment [15]. We use two metrics to prioritize
grasps. The first is the difference between rotations of the
target grasp and the current robot wrist:

δ(q, T ) = min(|Tg(q)quat−T quat|, |Tg(q)quat +T quat|) (6)

where Tg gives the grasp frame with respect to a robot
configuration q. Each grasp is checked for the existence of a
collision-free inverse kinematics solution. The second metric
for grasp prioritization is the distance between the solution
and the current robot configuration. Algorithm 2 shows how
the visual feedback algorithm orders the grasps using these
two metrics before calling the stochastic gradient descent
algorithm. γ forces the closest configuration solutions to be
considered first before the farthest ones.

Algorithm 2: path ← VISUALFEEDBACK(qstart, Graw)

G← SORT(using δ(qstart, Graw))1

γ ← 2.52

while G 6= ∅ do3

for g ∈ G do4

qgoal = arg minq∈IKSolutions(g) δ(q, qstart)5

if δ(qgoal, qstart) < γ then6

path← RANDOMDESCENT(qstart,qgoal)7

if path 6= ∅ then8

return path9

else10

G.remove(g)11

end12

end13

γ ← 1.5 γ14

end15

return ∅16

We define Cvisible as the space of all collision-free robot
configurations in Cfree that maintain the visibility constraints
with the object:

Cvisible = { q | q ∈ Cfree,

H(O) ∈ V(RobotMask,K, Tcamera(q)),
∀r∈R(Tcamera(q)−1)ONOBJECT(r, q,H(O)) }

(7)

Algorithm 3 shows the visual feedback algorithm. Given a
grasp transform, we first find the closest inverse kinematics
solution in configuration space and set that as the goal. Then
we greedily move closer to the goal and validate with Cvisible.
After the grasp frame Tg gets within a certain distance τ from
the goal grasp, we start validating with Cfree instead since it
could be impossible for the object to be fully observable at
close distances. Because the gripper is already very close to the
object and the object is not blocked by any obstacles due to the
visibility constraints, such a simple greedy method is sufficient
for our scenario. Another advantage of greedily descending is
that an incomplete plan can be immediately returned for robot
execution when planning takes longer than expected.

Algorithm 3: path ← RANDOMDESCENT(qstart, qgoal)

path ← qstart1

for i = 1 to N do2

qbest ←∞3

for i = 1 to M do4

q′ ← SAMPLENEIGHBORHOOD(q)5

if q′ ∈ Cfree and δ(q′, q) < δ(qbest, q) then6

if δ(Tg(qgoal), Tg(q′)) > τ or q′ ∈ Cvisible7

then
qbest ← q′8

end9

if qbest 6=∞ then10

path.add(qbest)11

if δ(qbest, qgoal) < ε then12

return path13

end14

return ∅15

One advantage of this framework is that he combined
planning times for the first planning stage and the second
visual feedback stage are actually comparable to the planning
times of previous manipulation systems that do not even
consider visibility [15, 16, 17]. Because the goal of the first
stage is only to get close to the object, it finishes really quickly.
Finally the second stage does not have to consider complex
planning scenarios since the target is right in front of the
camera, this allows it to also finish quickly. By dividing the
problem in two steps and conquering each individually, we are
able to achieve very fast global planning times.
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Fig. 5. The scenes tested with proposed visibility framework. The images show the robots at a configuration such that the visibility constraints are satisfied.

Barrett Schunk HRP3
Fig. 6. When building grasp tables, the object surface (green) is sampled (red)
and friction cones for contacts are extracted for computing grasp stability.

IV. EXPERIMENTS

To test the effectiveness of the framework, we have three
different robots perform reach-and-grasp tasks in complex
environments (Figure 5). All planners and experiments were
implemented in the OpenRAVE [18] system using C++,
Python, and Octave. First we show results of the planning
times and success rates of the individual components. Then
we describe how we implemented and tested this framework
on the Herb robot system.

In order to successfully get a robot to function in this frame-
work, we perform the following steps within the OpenRAVE
framework:

1) Attach camera to wrist and compute its intrinsic and
extrinsic calibration.

2) Automatically create analytical inverse kinematics solver
using OpenRAVE’s ikfast generator.

3) Record all poses of target object that can be successfully
detected by the camera.

4) Automatically generate a stable grasp set for the target
object.

5) Using the robot gripper mask, compute all possible cam-
era locations within the target object coordinate system
that can observe the object without any occlusions.

To compute average running times, we create 20 scenes
with randomly placed obstacles and record the times for each
individual component.

For the first planning stage, we record the sampling and
planning times. The average time it takes to sample the first
good valid inverse kinematics solution that meets all the
visibility constraints is shown in (Table I). Even with all the
constraints, it surprisingly takes a short amount of time to
sample a goal. Furthermore, we combine the sampling with
the BiRRT planner and compute the average time it takes to
move the robot from an initial position to a sampled goal.
Note that planning times include the time taken for sampling
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PA-10 WAM

Sample First Solution 0.026s 0.009s
Sample First Solution (many obstacles) 0.538s 0.097s
Planning Time 0.188s 1.215s
Planning Time (many obstacles) 0.905s 1.289s

TABLE I
AVERAGE PROCESSING TIMES FOR THE FIRST VISIBILITY STAGE FOR THOUSANDS OF

SIMULATION TRIALS.

PA-10 WAM

Few obstacles/Visibility Constraints 0.626s (93%) 1.586s (96%)
Many obstacles/Visibility Constraints 0.512s (83%) 0.773s (67%)
Few obstacles/No Visibility 0.117s (94%) 0.406s (97%)
Many obstacles/No Visibility 0.098s (86%) 0.201s (71%)

TABLE II
AVERAGE PLANNING TIMES (WITH SUCCESS RATES) OF THE VISUAL FEEDBACK

STAGE.

the goals.
For the visual feedback stage, we record average time to

complete a plan while maintaining visibility constraints (Table
II). In order to compute the how much visibility constraints
affect the times, we also record statistics for the feedback
stage ignoring the camera. Although the times vary greatly
depending on the situation, results show that the feedback
algorithm can execute at 2-10Hz. Looking at the planning
times, scenes with more obstacles usually finish faster than
scenes with fewer obstacles. This phenomena is most likely
because obstacles constraining the feasible configuration space
of the robot and guide it toward the goal faster.

V. CONCLUSION

In conclusion, the advantage of our visibility-based frame-
work is that we don’t limit the motion of the arm at the very
beginning by choosing a grasp, we instead choose grasps when
we have the most accurate measure of our target object and
its surroundings. In previous planning systems we have ex-
perimented with, performing both grasping and manipulation
planning takes 3-5 seconds. In comparison to the proposed
system, the total time of moving a robot arm to a feasible
grasp while considering visibility constraints takes less than
2 seconds. We showed timing and success rate experiments
with several robot platforms demonstrating the flexibility of
the system.
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