
Automated Construction of Robotic

Manipulation Programs

Rosen Diankov

CMU-RI-TR-10-29

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

26 August 2010

Thesis Committee:
Takeo Kanade, Co-chair
James Kuffner, Co-chair

Paul Rybski
Kei Okada, University of Tokyo

Copyright c© 2010 by Rosen Diankov. All rights reserved.

Keywords: robotics, autonomous manipulation, object recognition, planning, grasping,
simulation, inverse kinematics, motion control, camera calibration

Abstract
Society is becoming more automated with robots beginning to perform most tasks in facto-

ries and starting to help out in home and office environments. One of the most important

functions of robots is the ability to manipulate objects in their environment. Because the

space of possible robot designs, sensor modalities, and target tasks is huge, researchers end

up having to manually create many models, databases, and programs for their specific task,

an effort that is repeated whenever the task changes. Given a specification for a robot and

a task, the presented framework automatically constructs the necessary databases and pro-

grams required for the robot to reliably execute manipulation tasks. It includes contributions

in three major components that are critical for manipulation tasks.

The first is a geometric-based planning system that analyzes all necessary modalities of

manipulation planning and offers efficient algorithms to formulate and solve them. This

allows identification of the necessary information needed from the task and robot specifica-

tions. Using this set of analyses, we build a planning knowledge-base that allows informative

geometric reasoning about the structure of the scene and the robot’s goals. We show how

to efficiently generate and query the information for planners.

The second is a set of efficient algorithms considering the visibility of objects in cameras

when choosing manipulation goals. We show results with several robot platforms using

grippers cameras to boost accuracy of the detected objects and to reliably complete the

tasks. Furthermore, we use the presented planning and visibility infrastructure to develop

a completely automated extrinsic camera calibration method and a method for detecting

insufficient calibration data.

The third is a vision-centric database that can analyze a rigid object’s surface for stable

and discriminable features to be used in pose extraction programs. Furthermore, we show

work towards a new voting-based object pose extraction algorithm that does not rely on

2D/3D feature correspondences and thus reduces the early-commitment problem plaguing

the generality of traditional vision-based pose extraction algorithms.

In order to reinforce our theoric contributions with a solid implementation basis, we discuss

the open-source planning environment OpenRAVE, which began and evolved as a result of

the work done in this thesis. We present an analysis of its architecture and provide insight

for successful robotics software environments.

Contents

1 Toward A New Level of Automation 1

1.1 Need for Automated Construction . 2

1.2 Framework Design . 4

1.3 Computational Approach . 7

1.4 OpenRAVE . 8

1.5 Thesis Outline . 9

1.6 Major Contributions . 11

1.7 Publication Note . 12

2 Manipulation System 13

2.1 Problem Domain . 14

2.1.1 Task Specification . 14

2.1.2 Robot Specification . 16

2.2 System Modules . 19

2.3 Component Relationships . 22

2.4 Execution Process . 25

2.5 General Guidelines for Autonomy . 30

2.6 Discussion . 32

3 Manipulation Planning Algorithms 33

3.1 Planning in Configuration Spaces . 34

3.2 Planning to a Goal Space . 37

3.3 Planning to a Grasp . 40

3.4 Planning with Nonlinear Grasping Constraints 46

3.4.1 Relaxed Formulation . 47

3.4.2 Discretized Algorithm Formulation 49

3.4.3 Randomized Algorithm Formulation 51

3.4.4 Experimental Validation . 53

v

vi CONTENTS

3.5 Planning with Free-Joints . 57

3.6 Planning with Base Placement . 60

3.6.1 Base Placement Sampling . 61

3.6.2 Two-Stage Planning with Navigation 63

3.6.3 BiSpace Planning . 65

3.7 Discussion . 73

4 Manipulation Planning Knowledge-base 75

4.1 Inverse Kinematics . 78

4.1.1 Basic Formulation of Inverse Kinematics 80

4.1.2 Evaluating Equation Complexity . 82

4.1.3 Solving 3D Translation IK . 84

4.1.4 Solving 3D Rotation IK . 89

4.1.5 Solving 6D Transformation IK . 91

4.1.6 Solving 4D Ray IK . 92

4.1.7 Handling Redundancies . 95

4.1.8 IKFast Results . 96

4.2 Grasping . 98

4.2.1 Force Closure Squeezing Strategy . 99

4.2.2 Caging Strategy . 104

4.2.3 Insertion Strategy . 106

4.3 Kinematic Reachability . 108

4.3.1 Uniform Discrete Sampling . 111

4.4 Inverse Reachability . 113

4.5 Grasp Reachability . 119

4.6 Convex Decompositions . 121

4.6.1 Padding and Collisions . 122

4.6.2 Advantages of Volume Representations 123

4.6.3 Configuration Distance Metrics . 124

4.7 Object Detectability Extents . 127

4.8 Discussion . 130

5 Planning with Sensor Visibility 133

5.1 Sampling Visibility Configurations . 135

5.1.1 Sampling Valid Camera Poses . 137

5.1.2 Detecting Occlusions . 140

5.1.3 Sampling the Robot Configuration 142

CONTENTS vii

5.2 Planning with Visibility Goals . 143

5.3 Integrating Grasp Selection and Visual Feedback 145

5.3.1 Stochastic-Gradient Descent . 146

5.4 Humanoid Experiments . 149

5.5 Industrial Bin-Picking Experiments . 155

5.6 Discussion . 157

6 Automated Camera Calibration 159

6.1 Problem Statement . 160

6.2 Problem Formulation . 161

6.3 Process Outline . 163

6.3.1 Application to an Environment Camera 169

6.4 Calibration Quality and Validation . 170

6.5 Discussion . 174

7 Object-Specific Pose Recognition 175

7.1 Pose Recognition Algorithms . 176

7.1.1 Classifying Image Features . 178

7.2 Building the Object Database . 179

7.2.1 Gathering Training Data . 180

7.2.2 Processing Feature Geometry . 181

7.2.3 Feature Stability Analysis . 183

7.2.4 Geometric and Visual Words . 186

7.2.5 Relational Database . 188

7.3 Pose Extraction using Induced Pose Sets . 189

7.3.1 Generating Induced Pose Sets . 190

7.3.2 Pose Evaluation and Classification 191

7.3.3 Pose Extraction Process . 194

7.3.4 Experiments . 197

7.4 Discussion . 201

8 Conclusion 203

8.1 Contributions . 204

8.2 Future of Robotics: Robot-Task Compilers 207

A OpenRAVE - The Open Robotics Automation Virtual Environment 209

A.1 Architecture . 210

A.1.1 Environment . 212

viii CONTENTS

A.1.2 Validating Plugins . 214

A.1.3 Parallel Execution . 215

A.1.4 Exception and Fault Handling . 215

A.1.5 Hashes for Body Structure . 216

A.2 Interfaces . 217

A.2.1 Kinematics Body Interface . 218

A.2.2 Robot Interface . 218

A.2.3 Collision Checker Interface . 219

A.2.4 Physics Engine Interface . 220

A.2.5 Controller Interface . 220

A.2.6 Inverse Kinematics Interface . 221

A.2.7 Planner Interface . 221

A.2.8 Trajectory Interface . 224

A.2.9 Sensor Interface . 224

A.2.10 Sensor System Interface . 224

A.2.11 Viewer Interface . 225

A.2.12 Modular Problem Interface . 225

A.3 Working with Real Robots . 226

A.3.1 Padding . 226

A.3.2 Jittering . 227

A.4 Discussion . 227

References 229

List of Figures

1.1 A system that grasps cups from a bartender robot’s tray and puts them in a

dish rack for washing. The bottom shows the minimal set of components that

have to be considered to create a functioning autonomous bartender system.

Each component takes a lot of time to construct making the entire system

development time on the order of a year. Our goal is to reduce this time

by automating the construction of the components related to manipulation

planning and target object recognition. 3

1.2 Some of the robot platforms we have tested basic manipulation on. Each

robot’s internal world continuously models the geometric state of the environ-

ment so planners can make the most informed decisions. 5

1.3 Given a set of robot and task specifications, we construct the databases nec-

essary for the robot to robustly execute the task. The specifications feed into

the planning and vision knowledge-bases. Each knowledge-base analyzes the

specifications and constructors models to help drive the manipulation plan-

ning, sensor visibility analysis, and pose recognition algorithms. These basic

set of algorithms are used in the run-time phase to calibrate the robot sensors

and execute the task. 6

1.4 The OpenRAVE Architecture is composed of four major layers and is designed

to be used in four different ways. 9

2.1 A basic task is composed of a set of manipulable objects, their goal criteria,

and the real-world training data used to measure sensor noise models and

recognition programs. 15

2.2 A robot specification should provide a CAD model with annotations of which

parts of the geometry serve what purpose. 17

ix

x LIST OF FIGURES

2.3 The modules forming a manipulation system that this thesis concentrates

on. The knowledge-bases and goal configuration generators are automatically

generated from the task and robot specifications. 21

2.4 The robot and task knowledge database stores relationships between two or

more components. The relationships are color coded where green represents

task-related relations while blue represents robot-related relations. 24

2.5 The levels of an execution architecture and a description of their inputs and

outputs. 25

2.6 The steps necessary for executing the target tasks. 27

2.7 Example of localization in a 3D map using a camera. 28

3.1 Shows the connection between the robot databases when used for manipula-

tion and grasp planning. The most involved and important process is sampling

the goal configurations while taking into account all constraints and task pri-

orities. 34

3.2 Shows the environment distances for every point on the object surface (blue

is close, red is far). 35

3.3 An example of a breakdown of the manipulation configuration space of a task. 36

3.4 Grasp planning involving just the arm and gripper can sometimes require both

the grasp and release goals to be considered before a grasp is chosen.. 37

3.5 Shows examples of collision-free, stable grasps that are invalid in the environ-

ment. 42

3.6 Divides the grasps that pass GraspValidator into the set of reachable (has

inverse kinematics solutions) and unreachable grasps for one target. 44

3.7 Shows all the valid, reachable grasps that can be sampled from simultaneously.

The grasp set size is 341 and there’s 6 target objects for a total of 136 valid

grasps. 45

3.8 Several robot arms performing grasp planning. 46

3.9 A robot hand opening a cupboard by caging the handle. Space of all possible

caging grasps (blue) is sampled (red) along with the contact grasps (green). . 47

3.10 The basic framework used for planning discrete paths {qi}|n1 in robot config-

uration space to satisfy paths {qtarget,i}|n1 in object configuration space. . . . 51

3.11 Comparison of fixed feasibility regions (left) and relaxed feasibility regions

(right) for the Manus and Puma robot arms. 53

3.12 Example simulations using the relaxed grasp-set planning formulation. . . . 55

3.13 WAM arm mounted on a mobile base autonomously opening a cupboard and

a fridge. 56

LIST OF FIGURES xi

3.14 WAM arm autonomously opening a cupboard, putting in a cup, and closing

it. Wall clock times from start of planning are shown in each frame. 57

3.15 Shows a gripper whose fingers need to open, but cannot due to the table.

Planning by setting the free joints to the arm can move the gripper to a safe

location to open its fingers. 58

3.16 The planner is also applied to moving the torso joints of the robot such that

the arms do not hit anything. 59

3.17 When a robot is far away from its goal, it must also plan for moving its body

along with its arm. The robot should first find the possible grasps from which

it can sample robot goal locations. The planning algorithms will then join the

two configurations. 60

3.18 Several configurations returned from GoalSampler BasePlacement con-

sidering both robot arms, the humanoid’s torso, and multiple objects. 62

3.19 Humanoid upper body structure used to extract arm chains. 63

3.20 Having just a static navigation configuration qnavigation is not enough to safely

go into navigation mode, sometimes the target object might collide with the

robot. 64

3.21 Robot needs to plan to a configuration such that all its limbs are within the

base navigation footprint. 65

3.22 BiSpace Planning: A full configuration space tree is grown out from the robot’s

initial configuration (1). Simultaneously, a goal back tree is randomly grown

out from a set of goal space nodes (2). When a new node is created, the

configuration tree can choose to follow a goal space path leading to the goal

(3). Following can directly lead to the goal (4); if it does not, then repeat

starting at (1). 66

3.23 Comparison of how the distance metric can affect the exploration of the arm.

The top image shows the search trees (red/black) generated when the distance

metric and follow probability is weighted according to Equation 3.14. The

bottom image shows the trees when the distance metric stays uniform across

the space; note how it repeatedly explores areas. The goal space trees are

colored in blue. 70

3.24 Scenes used to compare BiSpace, RRT-JT, and BiRRTs. 72

3.25 Hard scene for BiSpace. The forward space tree (red) does not explore the

space since it is falsely led over the table by the goal space tree (blue). . . . 73

4.1 Computational dependency graph of all the components extracted from the

relational graph in Figure 2.4. 76

xii LIST OF FIGURES

4.2 An outline of the parameterizations ikfast can solve along with how the equa-

tions are decomposed. 79

4.3 The labeled joints (black) of the PR2 robot’s right arm. 85

4.4 The labeled joints (black) of the Kuka KR5 R850 industrial robot. 86

4.5 Two types of separable kinematic chains, which allow rotation joints (red) to

be solved separately from translation joints (blue). T0 is the base link frame,

Tee is the end effector link frame. 92

4.6 The parameterization of the ray (green) with the last two axes interesting. . 93

4.7 The parameterization of the ray (green) using a sub-chain of the Barrett WAM

arm. 94

4.8 Several robot platforms whose inverse kinematics can be solved by ikfast. . . 96

4.9 The gripper first approaches the target object based on a preferred approach

direction of the gripper. Once close, the fingers close around the object until

everything collides, then contact points are extracted. 100

4.10 A simple way of parameterizing the grasp search space. 100

4.11 Examples of the types of robot hands that can be handled by the grasp strategy.101

4.12 Grasps for the HRP2 gripper with a wrist camera mounted. Grasps contacting

the wrist camera are rejected automatically. As the gripper approach varies

the grasps change from power grasps to pinch grasps. 102

4.13 Fragile grasps that have force closure in simulation (contacts shown). 102

4.14 Example caging grasp set generated for the Manus Hand. 104

4.15 A fragile grasp that was rejected by the random perturbation in the grasp

exploration stage, even though it mathematically cages the handle. 106

4.16 Goal is for both manipulator tips to contact the surface of the target object.

The left box shows failure cases that are pruned, the right box shows the final

grasp set. 107

4.17 Idustrial robot using the magnet tip grasps to pick parts out of a bin. 107

4.18 Barrett WAM and Yaskawa SDA-10 kinematic reachability spaces projected

into 3D by marginalization of the rotations at each point. 109

4.19 The HRP2 reachability space changes when the chest joint is added (left vs

right). Also, the HRP2 wrist has a unique joint limits range, which can

increase the reachability density by 2x if handled correctly. 112

4.20 Shows one of the extracted equivalence sets for the Barrett WAM (869 sets),

HRP2 7 DOF arm (547 sets), and HRP2 8 DOF arm+chest (576 sets). Each

was generated with ∆θI = 0.15, ∆zI = 0.05. 114

LIST OF FIGURES xiii

4.21 Base placements distributions for achieving specific gripper locations; darker

colors indicate more in-plane rotations. 117

4.22 The grasp reachability map using validated grasps to compute the base distri-

bution (overlayed as blue and red densities). The transparency is proportional

to the number of rotations. 120

4.23 Examples of convex decompositions for the geometry of the robots. 121

4.24 Examples of convex decompositions for the geometry of the robots. 122

4.25 Convex decomposition makes it possible to accurately prune laser points from

the known geometry. 123

4.26 The swept volumes of each joint, where the parent joint sweeps the volume of

its children’s joints and its link. 125

4.27 Example scenes used to test the effectiveness of the configuration metric. . . 126

4.28 Camera locations that can successfully extract the object pose are saved. . . 128

4.29 The probability density of the detection extents of several textured objects

using a SIFT-based 2D/3D point correspondence pose detection algorithm. . 129

5.1 Comparison of a commonly used grasping framework with the visibility-based

framework. Because the grasp selection phase is moved to the visual feedback

step, our framework can take into account a wider variety of errors during

execution. The robot platforms used to test this framework (bottom). . . . 134

5.2 Object initially hidden from the robot, so its pose is not known with much

precision. It takes the robot three tries before finding it. 136

5.3 The real robots with the a close-up simulation of the wrist cameras are shown

in the top two rows. Given the real camera image, the silhouette of the

gripper (bottom) is extracted (black) and sampled (red), then the biggest

convex polygon (blue) not intersecting the gripper mask is computed. 139

5.4 For every camera location, the object is projected onto the camera image and

rays are uniformly sampled from its convex polygon. If a ray hits an obstacle,

the camera sample is rejected. The current estimate of environment obstacles

is used for the occlusion detect. As the robot gets closer and new obstacles

come into view and a better location of the target is estimated, the visibility

process will have to be repeated. 140

5.5 The two stage visibility planning method is as efficient as the one-stage grasp

planning method because it divides and conquers the free space. 144

xiv LIST OF FIGURES

5.6 When initially detecting objects, the robot could have a wrong measurements.

If it fixes the grasp at the time of the wrong measurement, then when it gets

close to the object, the grasp could be infeasible. This shows the necessity to

perform grasp selection in the visual feedback phase. 145

5.7 The scenes tested with the visibility framework. The images show the robots

at a configuration such that the visibility constraints are satisfied. 149

5.8 The calibration error from the head camera can be very inaccurate when

detecting over large distances. 150

5.9 Can efficiently prune out all the visibility candidates before sampling by using

reachability. 151

5.10 The full process of mobile manipulation using visibility, reachability, and base

placement models. 152

5.11 Manipulation with dynamic obstacles from range data (red boxes) using visi-

bility configurations. 153

5.12 The full process of mobile manipulation using visibility, reachability, and base

placement models. In order for the robot to grasp the object, it has to move

to the other side. But at the other side, the only way to see object is with its

wrist camera. 154

5.13 When sampling base placements with visibility, the reachability of grasp sets

also have to be considered, otherwise the robot will need to move again before

it can grasp the object. 154

5.14 Industrial bin-picking scene has a ceiling camera looking at a bin of parts and

a gripper camera. 155

5.15 Collision obstacles around target part need to be created for modeling un-

known regions because the robot does not have the full state of the world. . 155

5.16 Grasp Planning is tested by simulating the unknown regions. 156

6.1 Frames used in hand-eye camera calibration. 162

6.2 Describes the automated process for calibration. Assuming the pattern is

initially visible in the camera image, the robot first gathers a small initial set

of images inside a cone around the camera (green) to estimate the pattern’s

location. Then the robot uses visibility to gather a bigger set training images

used in the final optimization process. 164

6.3 The detectability extents of the checkerboard pattern (show in black). 166

6.4 Several configurations of the robot moving to a visible pattern location. . . . 168

LIST OF FIGURES xv

6.5 Example environment camera calibration environment. The pattern is at-

tached to the robot gripper and robot uses moves it to gather data. Sampled

configurations are shown on the right. 169

6.6 A plot of the intrinsic and absolute error (y-axis) vs the gradients of the repro-

jection error (x-axis). The top plots were generated by taking all combinations

of 5 images from a bigger database, the bottom plots were with combinations

of 10 images. This shows that gradients do not hold any information about

the confidence of result. Left side is projection error used to optimize the

intrinsic parameters while right side is the absolute error of fx. 171

6.7 Graphs the second smallest eigenvalue of the matrix used to estimate the

intrinsic camera parameters. As the eigenvalue increases, the deviation fx
becomes smaller and more stable. The left graphs are done for combinations of

5 images while the right graphs are with more than 11 images. The pattern is

more apparent for smaller number of observations. More observations decrease

the standard deviation of the solution, but the stability is still dependent on

the second eigenvalue. 172

7.1 A well established pose extraction method using 2D/3D point correspondences

to find the best pose. Works really well when the lighting and affine invariant

features can be extracted from the template image. 177

7.2 Database is built from a set of real-world images, a CAD model, and a set

of image feature detectors. It analyzes the features for stability and discrim-

inability. 179

7.3 A 3DOF motorized stage and a checkerboard pattern for automatically gath-

ering data. 180

7.4 Example rendering a blue mug from novel views using only one image in the

database. 181

7.5 Examples CAD models (first row), the training images (second row), and the

extracted depth maps (third row) of several objects. 182

7.6 Orientations from image features are projected onto the object surface and

are clustered. By re-projecting the raw directions on the surface plane and

converting to angles (right graph), we can compute all identified angles (in

this case 0 ◦ and 180 ◦) and the standard deviation of the particular mean

direction ±15.5 ◦. 183

7.7 Shows the stability computation for a hole detector and the stability detected

locations (red). 184

xvi LIST OF FIGURES

7.8 Stability computation for a line detector (upper right is marginalized density

for surface). The lower images show the lines from the training images that

are stably detected (red) and those that are pruned (blue). 184

7.9 Shows the statistics of a hole detector on industrial metallic parts. Each part

was trained with 300 images around the sphere. The right side shows the final

filtered features, which are used for extracting geometric words. 185

7.10 Shows the effect of poorly labeled data sets on the raw features (blue) and

the final filtered features (red). The filtered clusters for the correctly labeled

set become much more clear. 186

7.11 The histogram and labels of a feature’s descriptor distribution on the object

(in this case, it is the size of the holes). 187

7.12 The major shape clusters extracted. The clusters on the left (simpler shapes)

are more frequent than the clusters on the right (more complex shapes). . . . 187

7.13 PostgreSQL database that stores the relationships and dependencies of all

offline processes used for pose extraction and object analysis. 188

7.14 An example of the induced poses for a corner detector. The corner confidence

ψ(f) (top) is used to prune out observations with low confidence. The final

induced poses T (f) for a corner detector are stored as a set (bottom). 189

7.15 Several induced poses for a particular curve (red). 190

7.16 Mean images of the induced poses for an edge detector of a paper cup (in

simulation). 191

7.17 The individual detector scores for good and bad poses for the object in Figure

7.3. Using Adaboost, the misclassified good poses and misclassified bad poses

are marked on the data points. 193

7.18 For an object that has four holes, there are many valid poses of the object in

the real image that can hit all four holes. In fact, using hole features is not

enough to extract a confident pose, 1D curve features are absolutely necessary. 194

7.19 The search process first matches image features to a database, then randomly

selects a set of features and tests for consistency by intersecting their induced

pose sets. Each pose candidate is validated based on positively supporting

and negatively supporting features lying inside the projected object region. . 195

7.20 Several examples of chosen image features (blue) and their pose hypotheses

(in white). The bottom row shows the positively (green) and negatively (red)

supporting features of the pose hypothesis (blue). 196

7.21 Results of pose extraction using induced pose sets. 198

7.22 Ground-truth accuracy results gathered for each DOF of the pose. 199

LIST OF FIGURES xvii

7.23 Some geometric words cluster very densely around specific points on the object

surface. These stable points can be used for alignment. 200

8.1 The construction process can be treated as an offline compiler that converts

the specifications into run-time programs while optimizing the speed of its

execution. 207

A.1 The OpenRAVE Architecture is composed of four major layers and is designed

to be used in four different ways. 211

A.2 Distance queries. 219

A.3 Physics simulations. 220

A.4 Several simulated sensors. 224

A.5 Simple functions a viewer should support. 225

xviii LIST OF FIGURES

List of Tables

2.1 Task Specification Parameters . 15

2.2 Robot Specification Parameters . 17

3.1 Statistics for the scenes tested showing average planning times (in seconds)

and size of the grasp sets used. 54

3.2 Increase in Feasibility Space when using relaxed planning compared to fixed-

grasp planning. 54

3.3 Average planning time in seconds for each scene for the scenes in Figure 3.24. 72

4.1 Average time for calling the ikfast solver with the success rate of returning

correct joint values for transformation queries. 97

4.2 Analytic Inverse Kinematics Parameters . 97

4.3 Force-closure Grasping Parameters . 104

4.4 Kinematic Reachability Parameters . 111

4.5 Inverse Reachability Parameters . 118

4.6 Grasp Reachability Parameters . 121

4.7 Statistics and final distance metric weights for the Barrett WAM joints. . . . 126

4.8 Statistics and final distance metric weights for the Barrett WAM joints. . . . 126

4.9 Convex Decomposition Parameters . 127

4.10 Detectability Extents Parameters . 129

5.1 Average processing times for the first visibility stage for thousands of simula-

tion trials. 143

5.2 Average planning times (with success rates) of the visual feedback stage. . . 149

6.1 Initial intrinsic calibration statics showing the mean and standard deviation

of calibration results using 5 images. Note how the standard deviation is much

smaller when the principal is fixed to the center of the image. 165

xix

xx LIST OF TABLES

6.2 Reprojection and 3D errors associated with calibrating the extrinsic parame-

ters of the gripper camera. Both intrinsic error and reprojection errors are in

pixel distances, with reprojection error using only one pose for the checker-

board by computing it from the robot’s position. 169

Acknowledgments

First of all, I would like to thank my two advisors Takeo Kanade and James Kuffner. Thank

you both for the amount of patience with my work and the time you have put into explaining

the intracacies of research presentation and the power of language. Kanade-sensei, it has

been a great honor working with you for four years. I have learned more about doing solid

research and its meaning from you than anyone else. You have taught me skills that few

graduate students ever get a chance to experience during their time of study. James, from

the beginning of starting my graduate studies, I have felt a deep connection between us.

Both of us have come from a very mathematics- and graphics-heavy background, and we

eventually decided that our skills are better spent on solving serious robotics problems. Our

conversations about planning, AI, and software architectures have always been exhilarating.

Both of you have been very intrumental in shaping my thoughts about the robotics field and

the attitude I should approach all challenges with.

I would like to thank the rest of my committee members Kei Okada and Paul Rybski for

giving invaluable feedback throughout the thesis writing. It has been an amazing learning

experience and your comments and criticisms really helped clear up the content and final

thesis message.

Throughout my graduate studies, I had the honor of working with some of the best re-

searchers in the robotics field on many robot platforms. I would like to thank Satoshi Kagami

and Koichi Nishiwaki from AIST Japan who supported the initial research on autonomous

manipulation on the HRP2 humanoid robot. I owe many thanks to our initial robotics team

at Intel Research Pittsburgh: Sidd Srinivasa, Dave Ferguson, Mike vande Weghe, and Dmitry

Berenson. The numerous projects on autonomous manipulation, the contant demos, and the

great conversations will be always remembered. I would like to thank everyone at Willow

Garage for working hard to have the PR2 arms ready for testing the manipulation planners.

Special thanks to Morgan Quigley, Brian Gerkey, Ken Conoly, and Josh Faust, and the other

ROS (Robot Operating System) developers for making an awesome distributed robotics plat-

form. I would like to thank Ryohei Ueda, Yohei Kakiuchi, Manabu Saito, and Kei Okada

for the tremendous help with HRP2 humanoid experiments at University of Tokyo. I didn’t

xxi

think it was possible to stay and sleep in a lab without going home for a week straight until

I worked with you guys. I would like to specially thank Furukawa Makoto coming from the

industry. All the countless conversations we had on automating factory processes and the

current state of the art really helped put this thesis into perspective. You’ve been a great

friend and teacher, and it was always fun to bounce new ideas off of you. Finally, I would

like to thank my lab mates Jun-sik Kim and Jeronimo Rodrigues for the great work we have

done together.

I would like to thank my office mate Tomoaki Mashimo. It has been really fun discussing

with you the state of the robotics, how it will impact society. You have taught me a lot

about Japan and were always there when I had something on my mind to say. I also thank

Aki Oyama for the great conversations we’ve had about robotics venture companies and how

we can meet the demands of today’s consumers. Your passion for starting communities that

achieve great things as a whole is contagious, keep it up.

Finally, I would like to thank the entire OpenRAVE community, which rapidly grown

over the past years. All your great feedback has made OpenRAVE a very powerful tool for

planning research. Thank you for all the patience at times of major changes, it was all for

the best. Your help has let OpenRAVE become a success story for open-sourced research.

To my parents, who showed how to make dreams come true

Chapter 1

Toward A New Level of Automation

Today robots can be programmed to perform specific, repetitive tasks both in the industrial

setting and at the home. The continuous demand of new products and new services in our

society implies that there will be no shortage of new tasks that robots can perform without

human intervention. However, the current set of programming tools put a limit on the rate

at which new programs can be developed to meet the changing task specifications. For most

companies today, it takes on average six months to a year to develop a new assembly line for

mass producing one product. Considering the current trends of automated production and

services using robots, the amount of human resources available will continue to limit growth

until we can find a process that can automatically construct all the necessary programs for

completing a designated task. Because of increasing lifestyle demands in the 21st century,

a more efficient automation technology has to step in to compensate for the world’s limited

resources and fill the growing labor gap [Ausubel (2009)]

Today more than 1,000,000 industrial robots are operational worldwide, but very few,

if any, of them actually employ complex planning systems and geometrically reason about

their environments. The problem is that working with robots in the real world is plagued

with uncertainties like positioning error, which prevents an autonomous robot to completely

trust the output of the automatically constructed programs. A robot’s behavior needs to

be confirmed by a person before running on the real assembly line, and this requires a lot

of engineering manpower and detailed adjustments of the programs. To be able to trust a

completely automated behavior, the errors due to robot manufacturing, sensors acquisition,

and simulation modeling need to be quantified by calibrating the robot, a crucial process

for robot automation. Calibration corrects the internal models of the robot sensors and its

geometry such that the robot can begin to compute an accurate measure of its surroundings

at all times.

1

A system that can automatically generate programs should handle common industrial

environments, reason about the kinematic and sensing capabilities of the robot, learn to

recognize the target objects, and minimize uncertainty due to calibration, perception, and

execution errors by using sensing and planning in a feedback loop. As part of the manipula-

tion process, we dedicate a significant part of this thesis to explicitly consider the information

camera sensors provide when planning robot movement.

1.1 Need for Automated Construction

The reasoning components required for developing robust robot behavior can be complex,

and require a deep understanding of the geometric, computational, and physical phenomena

that underlies the problem. Although robotic automation has been gaining popularity in

factory settings and robotic systems have started becoming robust enough to be able to

autonomously navigate across city streets [Urmson et al (2008)], the amount of development

and robot programming required to setup a robot to reason about its surroundings and

autonomously perform a task is immense. Even the simplest and most common task of

robustly picking up an object in the environment and placing it in another place involves an

amount of autonomy and system infrastructure whose development cost is higher than the

economics of most products.

For exapmle, consider the bartender-arm system we developed in Figure 1.1 to explore

the possibilities and requirements of autonomous robots [Srinivasa et al (2008)]. Figure 1.1

shows the outline of the task and the components of the system. The bartender first builds

a map of its indoor environment and moves from place to place allowing people to place

their cups on it. After a short period of time, the bartender drives to a designated location

where an arm unloads the cups from it into a dish rack. Once the arm has picked up all

cups, the bartender continues to collect cups from people. Creating such a system involves

constructing the following robot system components:

• Motion controllers for the base, arm, and hand, the controllers run on dedicated hard-

ware guaranteeing real-time low-level command execution.

• Perception module for reading laser range data and camera sensors and updating the

environment model with where the robot is and where the cups are.

• Navigation module for avoiding obstacles and moving around designated locations in

the indoor environment.

• Simulation software to compute robot kinematics and geometric information.

• Manipulation planning infrastructure that allows the arm to reason about grasping the

cups and putting them in the dish rack.

Figure 1.1: A system that grasps cups from a bartender robot’s tray and puts them in a dish
rack for washing. The bottom shows the minimal set of components that have to be considered
to create a functioning autonomous bartender system. Each component takes a lot of time to
construct making the entire system development time on the order of a year. Our goal is to reduce
this time by automating the construction of the components related to manipulation planning and
target object recognition.

Possibly the weakest link in the entire chain of components is the manipulation system

and how it interacts with the perception system to complete its tasks. Manipulation requires

the highest precision to localize and detect the object and is the source of most of the failures

in the final system. Even for the simple bartender system, the interplay between the per-

ception and planning systems has a very big impact on overall task performance. Therefore,

the automated construction process has to explicitly consider the quality of information each

sensor is capable of producing in order to make the best decisions about robot placement. For

more complex manipulation systems involving mobile manipulators, multiple arms, onboard

camera sensors, and a plethora of target object types, it becomes an even bigger challenge

to analyze all the pieces to achieve working reliable robot behavior.

We target the manipulation framework for industry professionals. Although professionals

thoroughly understand their working environment and constraints, they are not experts in

motion planning, geometric analysis, and the intricacies of computational theory. Therefore

it is most advantageous to give them an input space that represents the minimal domain

knowledge necessary to define the task. This domain knowledge is separated from the rest of

the information like algorithmic parameters, which can be automatically generated by logical

reasoning and analysis. In the presented manipulation framework, professionals specify their

domain knowledge in the form of specifications that define the CAD models of the robot

and the task, semantic identification of the robot parts and environment locations, task

constraints, and training data. Using the specifications as inputs, the framework should use

its tool-set of generic algorithms to construct the knowledge-bases and execution programs

so that the robot can automatically calibrate itself, perceive it surroundings, plan in the

environment to pick-and-place objects, and reliably execute the plans for the task.

1.2 Framework Design

In this thesis, we analyze the most common manipulation tasks in industrial and smart-home

environments: have a robot reliably move a target object from one place to another. Pursuing

this goal has led us to test manipulation algorithms on more than eight different robot

systems, some of them are shown in Figure 1.2. As work toward this thesis progressed, each

successful demo has required significantly less time than the previous demos to construct;

towards the final humanoid experiments performed in this thesis, it took only a few weeks

to construct, test, and employ the framework. At its current state, the framework has

grown to a point that is starting to see applicability outside of the research sector. Through

experiences with all these platforms, several patterns in the development processes have

begun to appear, which we formally define and describe in the later chapters. The most

important design decision has been in separating the manipulation framework into two parts:

a set of generic algorithms running on the robot, and a construction process that can adapt

the generic algorithms to a wide variety of robots and tasks.

The thesis tackles several areas associated with the manipulation problem where it is still

not clear what components to use, how to automate their generation, and how to efficiently

Figure 1.2: Some of the robot platforms we have tested basic manipulation on. Each robot’s
internal world continuously models the geometric state of the environment so planners can make
the most informed decisions.

combine the algorithms into a final working system. The areas we specifically focus on

are geometric-based analyses of the robot and the task, whose outcome leads to a more

automated construction process. With our framework, it is possible to construct programs

requiring minimal explicit user input, which we quantitatively define as the robot and task

specification. The framework has the ability to adapt to new tasks and robot kinematics

so even people with minimal planning and vision knowledge can quickly get a robot to

automatically complete a basic manipulation task.

The goal is a minimal set of algorithms such that the system components mentioned so far

can come together into a coherent system that achieves the domain of tasks we define. Figure

1.3 shows a breakdown of the construction process and the components that we play a key

role in the culmination of the framework. The task and robot specifications are the domain

knowledge input into the system, they provide the CAD models and several basic semantic

definitions like where the robot arms are; their complexity has been kept to a minimum

so that non-experts can easily define their own configurations. We define a manipulation

planning knowledge-base that organizes all databases, models, and heuristics necessary for

manipulation tasks. The knowledge-base is generated from the task and robot specifications,

Figure 1.3: Given a set of robot and task specifications, we construct the databases necessary
for the robot to robustly execute the task. The specifications feed into the planning and vision
knowledge-bases. Each knowledge-base analyzes the specifications and constructors models to help
drive the manipulation planning, sensor visibility analysis, and pose recognition algorithms. These
basic set of algorithms are used in the run-time phase to calibrate the robot sensors and execute
the task.

and represents frequently used information that can be computed offline and is dependent on

robot and task structure. The object recognition programs are trained at this point using the

target object CAD model and a set of training images showing the appearance of the object.

Similar to the planning knowledge-base, a vision-based database can help in organizing

the object-specific information for pose extraction programs. Using the knowledge-bases,

the generic planning and sensor visibility algorithms responsible for robot movement are

selected depending on the task and instantiated with the specific knowledge-base models. We

motivate the need for a minimal set of motion planners and goal configuration samplers that

use this knowledge-base to complete all required manipulation tasks. After all databases and

planners are trained and before the robot can execute its plans, the system has to calibrate

the robot’s sensors so its internal representation matches the real world. This calibration

method should be completely automated when considering the manipulation system as a

whole so that it can be performed at any time. Once the calibration phase is done, it the

task can be executed using a simple execution pipeline.

Although we pose no time constraints on the planner and sensing algorithm computation,

we loosely aim for the entire robot system to complete its target tasks on the order of minutes.

We stress here that the planning algorithms and metrics we analyze are meant to prioritize

reliable execution of the task rather than generating smooth, time-optimal, energy-optimal,

safety-optimal, or natural-looking robot motions. Most of these heuristics would require

a different set of algorithms that also incorporate velocities and time into the planning

process, which are not covered in this thesis. Because of the complexity of dynamics and

lack of accurate dynamic simulators for robotics, the thesis only analyzes the kinematics

and goemetry processes of a manipulation task. We treat all dynamics and force-feedback

processes as part of the robot controller that moves a robot. In the context of industrial

robots, most task can be automated without requiring programs with complex force-feedback

loops. Furthermore, execution failures come at the highest cost where an assembly line has

to be completely stopped in order to recover from the error. Given that most problems

plaguing today’s autonomous robots are failures due to perception and calibration errors,

we dedicate all goals of the thesis to achieving reliability.

1.3 Computational Approach

When designing the system architecture, we followed the driving principle that offboard

computation and memory are freely available. This assumption allows us to concen-

trate on designing more powerful algorithms, store more flexible models, and use scripting

languages rather than spending time on optimizations for onboard embedded computers.

Many of the final robot systems presented in this thesis have gigabytes of preprocessed

knowledge-bases and distribute their computation across many computers. There are very

few programs that need to run on the robot like: drivers for the robot hardware, com-

munication software for allowing access to robot systems to offboard devices, and reactive

controllers that where the robot has to respond on the order of several milliseconds. Any

other program that communicates at a low-bandwidth and sends at approximately 30Hz or

less can be easily moved offboard where the computational and power constraints are much

less restricted.

Today’s advances in quickly accessing large databases has allowed a paradigm shift in how

models and information is stored and processed in computers. Previously, researchers relied

on parameterizations for capturing the essence and patterns of a sub-problem. Using pa-

rameterizations, it becomes possible use numerical methods and gradient-descent techniques

to quickly search for the best solutions. Parameterizations also allow very compact storage

of the data since most of the work for a particular sub-problem is encoded into the type of

parameterization. However, parameterization comes at the cost of flexibility in representing

more complex spaces that have not been considered at the design phase of the algorithm.

This implies that newer parameterizations have to be studied and developed as the complex-

ity of tasks and demands of users continue to grow. Fortunately, there exist kernel modeling

methods that can provide the flexibility in modeling any complex space without the need

for explicitly parameterizing it, which comes at the cost of computation and memory. In

order to design a manipulation framework capable of handling a wide variety of usage cases

without limiting users to particular patterns, this thesis models spaces using kernels and

probability distributions, and it efficiently queries these spaces during runtime processes

using sampling-based methods. In each area of manipulation, we analyze algorithms for

efficiently sampling hypotheses that abide by the constraints of the task and the goals of

the robot. These analyses have allowed us to shift the representational complexities of the

domain tasks into computational complexities, which have converted manipulation problems

into problems of architecture design and speed optimizations. Today’s hardware allows us to

leverage such modeling tools while providing flexible modeling of any domain space without

sacrificing the required planning speed.

Algorithm Performance Measurements

We present many timing experiments throughout the thesis in order to give a general insight

on how fast samplers are. We record all timings of an algorithm on a single thread using an

average CPU core, despite the fact that the samplers and planners presented in this thesis

can be ridiculously parallelized. Furthermore, all planning experiments are measured from

the time the planner starts settings up structures and caching its models to the time a path

is generated; no post-processing operations like smoothing are performed.

1.4 OpenRAVE

For facilitating the development of this framework, we developed a planning environment

titled OpenRAVE, the Open Robotics Automation Virtual Environment. OpenRAVE forms

the foundation of all the results presented in this thesis, and its open-source nature has

allowed over a hundred researchers across the world to quickly run manipulation programs.

The OpenRAVE architecture shown in Figure 1.4 simplifies the implementation and testing

of planning algorithms and allows new modules to easily inter-operate with other modules

through a well-defined Application Programming Interface (API). The structure of operating

systems, computer languages, and debugging tools has motivated the division of OpenRAVE

into four major layers: a core layer for the API, a plugins layer for extending functionality,

a scripting layer for run-time analysis, and a database layer for generation and quick

retrieval of the knowledge-bases. These layers combine into a set of tools non-experts can

use in analyzing their problem without requiring an in-depth knowledge of software systems,

manipulation planning, and physics.

The OpenRAVE architecture began as a result of this thesis work and has evolved through

Figure 1.4: The OpenRAVE Architecture is composed of four major layers and is designed to be
used in four different ways.

the testing of many robot platforms and the feedback of a rapidly growing OpenRAVE

community. Having a large user base composed of planning researchers and non-exerts like

mechanical engineers has provided invaluable feedback into how a manipulation framework

should be designed and how the user should interact with it. As a consequence, OpenRAVE

has gone through a re-design phase two times, each new design has automated more basic

manipulation functions while removing functions that spread the environment too thin and

don’t provide much value. Such a process has allowed OpenRAVE to concentrate only

in manipulation and geometric analyses, which has allowed new innovations beyond any

capabilities of existing planning environments.

1.5 Thesis Outline

Chapter 2 is responsible for motivating the algorithms and contributions for the bulk of the

content presented in the thesis. It begins with the definition of the manipulation problem

and the robot and task specifications that serve as inputs to it. Section 2.2 presents a

component-based execution architecture that combines all the processes into one coherent

system. Section 2.3 formulates the inter-relations between all components as a relational

graph, which can be used to motivate what information can be computed offline and what

is online. In order to simplify the system design and assumptions we make on each of the

algorithms, Section 2.5 sets up several guidelines for autonomy for the execution architecture.

These guidelines are used to define the environment, robot, and task complexity and the

typical scenes in which we will evaluate our framework.

Chapter 3 introduces the fundamental planning algorithms necessary for safely moving

the robot across the scene. We describe the general formulation of how to search a robot

configuration space using an arbitrary goal space. This formulation is then applied to sub-

problems of manipulation like planning to grasp, planning with the robot base, planning to

opening doors, and planning with free-joints. We stress importance in defining goal samplers

that can quickly analyze the scene and give a direction for the robot to search.

Chapter 4 presents the structure and efficient generation of a manipulation planning

knowledge-base that stores information dependent on the current robot and task specifica-

tions. The knowledge-base analyzes object grasping, inverse kinematics, kinematic reachabil-

ity, grasp reachability, robot base placement, correct collision and volume modeling, distance

metrics, and vision-based models of object detectability. For each component, it provides au-

tomated algorithms for its generation and discusses usage in the context of the manipulation

framework.

Chapter 5 deals with the relationship between vision sensors, visibility capabilities, and

planners. It defines a visibility sampler that allows the robot to reason about where to

place its sensors in order to provide better estimates of the target objects. The visibility

framework is tested on several real robots and results are discussed. Furthermore, we present

a combination of visibility and visual feedback methods for continuous validate of the plan.

To make the entire system complete, Chapter 6 delves into algorithms to calibrate the

position of cameras with respect to the robot coordinate system. While most algorithms

usually require several manual processes to sample and gather good calibration data, we

formulate a method that allows the robot to automatically reason about the calibration

pattern detectability and how to achieve a good sampling of training data for solving the

parameters. Using the planning theories developed in this thesis, we show how to calibrate

the robot’s onboard camera sensors from a pattern anywhere in the world.

On the perception side, Chapter 7 discusses object pose recognition programs. To provide

the extraction programs with better features we present a capturing method that allows

automatic analysis of any image feature’s stability and discriminability on the object’s surface

by taking advantage of the availability of the object’s geometry. We discuss the practical

trade-offs with the analysis and experiences with creating a database for this information.

Furthermore, we present a novel voting-based algorithm based on induced pose sets that

does not require 3D object features or feature correspondences.

As a closure to this thesis, Chapter A focuses on the implementation and integration

issues of the presented framework using the OpenRAVE planning environment. We discuss

the practical issues and enabling technologies of OpenRAVE.

1.6 Major Contributions

The theoretical major contributions of this thesis are:

• An explicit construction process that takes domain knowledge into the form of specifi-

cations, and generates a knowledge-base that allows quick runtime execution of plans.

• Proposed several new manipulation planning algorithms that allow efficient planning

with goal spaces, mobile manipulators, and sensor visibility. We present a generalized

goal configuration sampler that encodes everything about the robot and task when

prioritizing goals.

• A planning knowledge-base that automated analyses for object grasping, inverse kine-

matics generation, kinematics reachability, and object detectability. The algorithms

are described in the context of previous work and their contributions lie in their non-

parametric formulations and flexibility in handling different tasks and objects.

• Methods that efficiently plan with the camera sensor to provide reliable execution.

We present a two-stage approach to manipulation planning and prove its necessity for

easily working with sensors without tight feedback loops.

• An automated camera calibration method that can compute the camera model and

camera placement on the robot surface with a single button click. The method using

motion planning to handle environment collisions and guarantee visibility with the

calibration pattern. Furthermore, we contributed a way to measure to quality of the

calibration data.

• A method to analyze the a feature detector’s distribution on the object surface to

compute stable and discriminable features, which allows for extraction of geometric

and visual words for the specific object.

• The induced-set pose extraction algorithm that can accurately extract pose under very

cluttered scenes and works under no assumptions on the object surface and the feature

detectors. The algorithm is voting-based and uses a novel learning-based process for

evaluating pose hypotheses in the image.

1.7 Publication Note

Part of the work done in this thesis has appeared in previous publications. The system

outline in Chapter 2 was first introduced in the basic manipulation systems in [Srinivasa

et al (2008, 2009)] where we combined navigation and manipulation planning to form one

coherent system. Part of the grasp planning theory in Chapter 3 [Diankov and Kuffner

(2008)] was first covered in [Diankov and Kuffner (2007); Berenson et al (2007); Diankov

et al (2008a)]. Door opening and caging grasp construction was first published in [Diankov

et al (2008b)]. The visibility theory covered in Chapter 5 was first presented in [Diankov et al

(2009)]. Finally, the OpenRAVE architecture of Chapter A was first published in [Diankov

and Kuffner (2008)], since then the architecture has evolved at a great pace and the hope is

for this thesis to serve as the more current OpenRAVE publication.

Chapter 2

Manipulation System

The system architecture dictates how all the individual components in a system interact

with each other to form a collective system that can perform its target tasks. The most

basic systems center around a Sense→Plan→Execute loop where the information flow is

strictly defined between the three components; the formulation allows a divide-and-conquer

approach to solving robotics problems [Russell and Norvig (1995)]. Although several complex

and capable systems have been designed with this structure [Srinivasa et al (2009)], the robot

execution needs to consider feedback processes in several hierarchy levels in order to recover

from errors and changes in the environment. Each hierarchy level can represent sub-loops

of Sense→Plan→Execute depending on the time-constraints of the solution and at what

semantic level the planning is being done at. Recent research in autonomous vehicles [Baker

et al (2008)] has shown that a critical component to robust execution is an execution monitor

that continually validates the current path the robot follows and takes a corresponding action

when an error is detected. The ALIS architecture [Goerick et al (2007)] further generalizes

the concept of hierarchies and monitoring across the system by mathematically modeling the

relationships between information flow. A common observable pattern is that all successful

robotics systems have many sensor feedback loops beyond low-level controllers that each

cooperate to move the robot.

The goal of this chapter is to setup the flow of the execution system and dictate the

structure of the rest of the thesis in explaining the manipulation processes. We begin by

defining the manipulation problem to be solved and covering all the system elements in-

volved in producing the final robot behavior and computational infrastructure. We cover

robot and task specifications that clearly state what domain knowledge is required in the

problem, which helps define the extensibility of the system. In the simplest form, the robot

specification defines the CAD model and kinematics of the robot along with several semantic

13

labels for what geometry corresponds to attached sensors and arms. We then provide the

system map of all the functional modules and how they pass information across each other.

Compared to other systems, there are two new modules in our system which play a key role:

the goal configuration generators and the knowledge-base of precomputed, planning-specific

information. Furthermore, we analyze the manipulation system from the angle of individual

components that play key roles in the planning algorithms and help us formulate and design

the planning knowledge-base. For example, the arm component and gripper components

are relate to each other through the kinematics. Using the basic module and component

definitions, we formulate an execution process that defines the general flow in which the

robot will move in order to complete its task. Towards the end, we briefly introduce set

of autonomy guidelines to formally define the requirements of each of the modules in our

execution system.

2.1 Problem Domain

The complexity of the algorithms we use is directly related to the assumptions and expec-

tations made on the framework. In this section we define a set of loose requirements for the

types of tasks and types of robots our framework should handle. These requirements will

allow us to simplify the design of the algorithms while still providing a useful and convenient

framework for manipulation.

2.1.1 Task Specification

In this thesis we are interested in tasks that involve moving a single rigid object to achieve

these set of goals:

• Place the object in designated locations with respect to another object or the map of

the environment.

• Act on the object by moving it a relative distance from its initial configuration, placing

it a designated location, or pushing it like a button.

Figure 2.1 shows the required information the user should specify to the system. We

require the CAD model of every manipulable object be specified. We are interested in

manipulation specific objects that have a fixed geometric and material properties, and are

not interested in generalizing manipulation algorithms semantic classes of objects. Because

there is a lot of research on how to automatically acquire the geometry of an object using

LIDAR and vision sensors [Curless et al (1995); Zhang et al (2002, 2003)], we can safely

Figure 2.1: A basic task is composed of a set of manipulable objects, their goal criteria, and the
real-world training data used to measure sensor noise models and recognition programs.

Parameter Name Parameter Description

Target Geometry a set of rigid links (using convex decompositions) connected by joints
Target Training Data labeled images containing the appearance for operating conditions
Target/Robot Goals a goal sampler or explicit goal positions to move the target/robot to
Target Constraints A function defining the valid configurations of the target
Avoid Regions All geometric regions of the target that should not be contacted
Environment Geometry, the up direction, and the regions of possible robot movement

Table 2.1: Task Specification Parameters

assume the geometry is known. Furthermore, the task specification should provide real world

images or other sensor readings in order to learn how the object’s appearance is associated

with its pose, which is used to build more robust object-detection programs. Because the

training data comes from sensors, it is possible to measure the uncertainty introduced by

the sensor acquisition process. Having fixed geometry and appearance greatly simplifies

the object pose extraction and grasping programs because the framework does not have to

generalize or learn this information. This allows the generated programs to be more accurate

and less prone to modeling error.

Other information in the task specification deals with defining the goal of the task and

any constraints on the target object or robot motion. For example, one of the simplest task

constraints would be to carry a bucket full of water while maintaining its orientation with

respect to the ground so as to avoid spilling the water. Finally, an optional specification is

a geometric map of the environment the robot moves in, which can be used for navigating

and collision avoidance. Although there exists many algorithms to acquire environment

semantic information during run-time [Rusu et al (2008)], knowing the map can avoid the

extra information-gathering step and make execution faster. Table 2.1 lists the parameters

and their descriptions.

High-level Task Planning and Behavior

There are many flavors of task planning involving higher-level reasoning that can be added

on top of this framework to perform more complex tasks. High-level reasoning can involve

the possibility of moving obstacles out of the way for a planner to succeed [Stilman et al

(2007b)], or can involve symbolic task planning that reasons about the optimal order of

actions [Marthi et al (2008); Okada et al (2008)]. Harnessing the power of symbolic planners

requires domain knowledge to be inserted into the system to help interpret and extract

symbols from sensor data and the environment [Fikes and Nilsson (1971)]. A different

approach to completing tasks are cognitive systems that have very abstract goals of learning,

exploration, and task reward. Such systems are meant to mimic how the human mind works,

and therefore prioritize sensor-feedback and reactive behaviors over explicit modeling of the

environment [Stoytchev and Arkin (2004)]. Other systems more formally encode the task

goals as robot behavior such that the collective behaviors eventually achieve the task [Stolarz

and Rybski (2007)].

Although high-level task planning and cognitive behaviors are important fields, we specif-

ically focus on basic tasks in order to separate the problems associated with automated

manipulation from those of language and intelligence. Because the framework we present is

deeply grounded on geometry, environment models, and physics sensor readings, it has very

little semantic associations to language and function. This makes it possible to leverage the

presented manipulation framework to serve as a buffer between the symbolic and behav-

ior worlds and low-level physical manifestations of the environment state. Most high-level

intelligence frameworks require symbols to be grounded [Russell and Norvig (1995)]. The

framework presented in this thesis can serve as a way the basis for a set of motion primitives

which can be later combined in a high-level intelligence system; the goal of this system is to

create an autonomous robot, not an intelligent robot.

2.1.2 Robot Specification

A robot is composed of a set of sensors to take measurements of the environment and a set

of actuators that move the robot from one place to another. Figure 2.2 shows a diagram of

the information necessary for a robot specification, basically a specification should provide:

• The kinematic and geometric models of how the actuators affect the physical robot.

Figure 2.2: A robot specification should provide a CAD model with annotations of which parts
of the geometry serve what purpose.

Parameter Name Parameter Description

Geometry a set of rigid links precisely defining the robot shape
Padded Geometry convex decompositions of padded links used for environment collisions
Kinematics Joints connecting links that define the configuration space and its limits
Dynamics the dynamic properties of all the links and joints, parameter limits
Arms a chain of joints defining the arm and the type of inverse kinematics to use
Grippers a set of joints controlling the fingers/mechanism, joint directions for closing fingers
Manipulators each manipulator consists of an arm and a gripper
Sensors type of sensor, robot link and location attached to, sensing volume
Robot Base how robot base moves across environment. Moves all manipulators and sensors
Avoid Regions parts of robot like sensors that should be avoided from all collisions
Control expected positioning errors on physical movement from inputs, and hardware limits

Table 2.2: Robot Specification Parameters

• Constraints due to the mobility method of the robot base,

• A separation of the links composing the arms and grippers of the robot. A gripper

is responsible for making contact with the environment, and an arm is responsible for

moving the gripper.

• The attached sensors.

• A hardware interface for controlling the robot.

Table 2.2 describes all the robot parameters in detail.

Sensing is divided into estimating the state of the robot (proprioception) and estimating

the state of the environment (extero-ception). Both sensing modalities have errors associ-

ated with them that must be accounted for during the knowledge database construction and

task execution processes. Proprioception errors typically take the form of fixed calibration

offsets while perception errors take the form of wrong and missing measurements and mis-

classification of target objects. The lowest level of control in a robotic system is a tight

feedback loop between the actuators and proprioception module that cancels out dynamics

and physical mechanism properties, thus giving the higher level components a simpler kine-

matic view of the entire robot. Because this thesis mostly focuses on the interplay between

the planning, vision, and execution components, we assume a simple hardware interface that

communicates with the robot hardware is specified. The hardware interface should provide:

• The current position and velocity of the robot’s joints at high communications rates.

• A service to control velocity at high communication rates.

• A service to follow a time-stamped trajectory of joint positions and velocities.

The rate at which communication occurs between the robot hardware greatly impacts the

robot’s responsiveness to the environment and should be greater than the fastest feedback

loops in the execution architecture. In our case, the controller loops should be faster than

the visual servoing, environment sensing, and execution monitoring loops.

The only perception sensor we examine deeply in this thesis is the camera sensor. Dense

information can be extracted from camera sensors, which allows more robust object detection

and object pose computation as compared to other sensors. Once a user specifies what robot

links the cameras are attached to, our framework can automatically calibrate the sensor

using the method in Chapter 6. We can also start computing the sensor visibility models of

objects (Section 4.7) necessary for reliable planning and execution.

Robot Kinematics

The robot kinematics should be divided into:

• a mobile base that controls the in-plane 2D translation and 1D orientation of the robot,

• a robot arm that controls the 3D translation and 3D orientation of the gripper,

• and a gripper that is used to make contact with the environment and manipulate

objects.

The separation of the mobile base is because navigation planners commonly treat the

robot directly in the 2D workspace. Furthermore, the mobile base is responsible for moving

across the environment where there are uncertainties in the composition and shape of the

terrain. Such uncertainties mean that the mobile base can be very inaccurate in moving

to its desired goal position, therefore it is treated as a separate component that receives

goal commands and roughly moves the robot to the destination. Depending on the mobility

method and target environments, the control inputs can become arbitrary complex, so we

refer to the vast controls research literature on providing simple interfaces to complicated

humanoid and nonholonomic robots [Chestnutt et al (2006); Chestnutt (2007); Li and Canny

(1993); An et al (1988)].

For the robot arm, we plan directly in the joint configuration space and build the neces-

sary heuristics to speed up the planning process. Although not a requirement, the execution

performance will greatly increase for robot arms that lend themselves to easy computation of

the analytical inverse kinematics equations1. Most common robot arms today [Wyrobek et al

(2008); Kaneko et al (2004); Albu-Schaffer et al (2007); Barrett-Technologies (1990-present);

Exact-Dynamics-BV (1991-present)] do satisfy these properties, so the thesis concentrates

on making planning easier and faster for such kinematic structures. However, inverse kine-

matics solvers only speed up the planning process, and are not required for robots with low

number of joints such as the Katana arm [Neuronics (2001-present)].

For the gripper, the algorithms we cover are capable of handling most kinematic struc-

tures. Because, we can simulate all possible gripper preshapes and directions of approach,

there are no particular restrictions on geometry or degrees of freedom. However, the entire

process will greatly speed up if the following information is specified for each gripper:

• A preferable set of approach directions for the gripper; typically close to the normal

vector of the gripper palm.

• The direction that joints should move when applying force on a grasped object. Like

the human hand, gripper mechanisms are optimized for applying forces in designated

directions and withstanding contact forces at them.

2.2 System Modules

We identify several key tasks for a robot to achieve basic pick-and-place manipulation:

• Calibrating the robot sensors to predict the robot state in the real world.

• Finding the target objects and sensing the environment obstacles.

• Breaking down the task into robot goal configurations.

• Moving the robot throughout the environment while avoiding obstacles.

• Considering sensor visibility for better information extraction.

1This requires having six or more degrees of freedom

• Recovering from errors due to perception and execution.

Implementations satisfying these functions can become arbitrarily complex depending on

the assumptions researchers make on the problem. For example, creating a program to find

the locations of all cars or cups in an image is an unbelievably complicated process [Li et al

(2009)]. However, finding the translation and orientation of a specific cup is a much more

well-defined problem that has an exact and unique solution. In the case of object recognition,

we can generate as many object-specific vision recognition programs as the task requires

without having to solve the much harder general problem of object recognition [Malisiewicz

and Efros (2008); Pantofaru and Hebert (2007); Torralba et al (2007); Schneiderman and

Kanade (2004)], which also brings in issues of language semantics and context [Divvala

et al (2009)]. If we can develop such programs for all manipulable target objects, then

the rest of the environment can just be treated as one obstacle with no extra semantics

attached. Then to successfully avoid the obstacles, the robot just has to continually measure

the distances to them. Exploiting the fact that the robot and task specifications contain

everything necessary to describe the problem, we can use similar arguments to simplify

the assumptions imposed on the technologies mentioned above, thus making the automatic

construction of manipulation programs a feasible problem.

Steps for Completing a Task

We introduce the typical modules composing an autonomous manipulation system. Figure

2.3 shows how the modules pass information to each other. Before the robot starts the task,

we compute a robot and task knowledge database independent on runtime information like

environment obstacles. This knowledge database includes:

• Grasping models for target object and hand,

• Analytical inverse kinematic solvers,

• Robot reachability models,

• Information to perform faster and more accurate collisions,

• Robot configuration distance metrics,

• Robot sensor visibility capabilities,

• Programs to find target objects in images and extract their poses.

An execution monitor that constantly monitors the current robot state for possible ob-

stacle collisions or unexpected sensor readings is a necessary module for robust execution

[Okada et al (2006); Baker et al (2008)]. Each phase of the planning outputs a path of

robot positions that are then be executed by the controller. The controller should have the

Figure 2.3: The modules forming a manipulation system that this thesis concentrates on. The
knowledge-bases and goal configuration generators are automatically generated from the task and
robot specifications.

capability to stop a trajectory at any point in time and restart a new trajectory avoiding

the possible error condition. This ability allows us to implement the entire spectrum of error

recovery conditions.

A fundamental module is the ability to safety move the robot around the environment

without hitting any obstacles. This requires the robot maintain up-to-date knowledge of the

obstacles in the environment. Besides obstacles, the system also needs a module to find the

locations of all the target objects that must be manipulated by the robot. Combining this

information with sensor noise models, we can construct an accurate environment represen-

tation in simulation where the robot can geometrically start reasoning about how to avoid

obstacles and manipulate the target objects. Once a robot has found the target object, using

knowledge of physics and the object geometry, we can automatically build models of how

to stably grasp the object and manipulate it. Combining the grasping models and robot

kinematics with the task constraints defined by the problem specification, we can compute

the space of all possible robot goals and movements that will satisfy the task. Goal config-

uration selection should also consider sensor visibility so that the robot can guarantee the

quality of the target object information extracted from the sensor data.

Robot movement is divided into planning for the base of the robot and planning for the

manipulators responsible for achieving contact with the target object. Base movement, also

called navigation, deals with moving the robot on a 2D map such that dynamics constraints,

real-time constraints, and collision-avoidance constraints are met [Ferguson (2006); Kuffner

et al (2003)]. Manipulator movement is slightly more complex because of its high number

of degrees of freedom, so randomized algorithms are introduced that trade-off optimality for

algorithm tractability. Once a global robot trajectory is computed from the planners, it is

sent to the low level robot controller that filters the movements through the robot dynamics

and commands the actuators. During execution of the trajectories, an execution monitor

must continually validate the robot target path with the new environment information to

guarantee the robot is still collision-free, the target object is still in the expected position,

and the goal requirements can still be satisfied. Some task motions require very careful

positioning of the robot gripper with respect to the target object. In this case, a different

class of planning algorithms is used that form a tight feedback loop with the vision sensor

measuring the object location.

2.3 Component Relationships

We identify nine components part of the robot system:

• Environment - Environment snapshot storing the current state of the obstacles and

target objects..

• LIDAR - Distance data to environment using laser range finders.

• Camera(s) - The camera sensors and produced images.

• Target Object(s) - The target objects of the specified task

• Robot Base - The base link of the robot specifying the location of the robot.

• Manipulator(s) - The manipulator links and joints used to move the grippers around

the environment.

• Gripper(s) - The grippers used to make contact with the environment.

• Control - Controller used to execute trajectories.

• Planning - The planner used to plan paths from an initial configuration to a goal

configuration.

Figure 2.4 shows a detailed relational graph of the nine components; each edge links two

or more components and specifies the databases constructed from those components. This

relational graph can greatly help in figuring out the necessary databases to construct and

the dependencies between components when using the knowledge database. Some of the

relationships between these components can be computed offline directly from the robot and

task specifications. It is these runtime-independent relationships that form the basis for the

planning knowledge-base covered in Chapter 4.

As a simple example of traveling the relational graph, let us compute all the necessary

databases needed for planning to grasp an object. In order to connect the target object

and planning components, we start at the target object and use the grasp sets to relate to

the gripper. Given the gripper locations we can use the inverse kinematics to relate to the

manipulator. Finally, we need to use the self-collision and distance metric modules to start

planning. However, it is clear that the planning component requires an environment that

holds the state of the current obstacles which the planner will use to guarantee collision-free

paths in the robot configuration space. As discussed in Chapter 3, the planning process is

mostly parameterized by the robot goal-configuration function, so all the relations that have

been gathered starting at the target object will be used to set the correct goal configurations

for the planner to search a path to.

As Figure 2.4 shows, there exist many different paths when linking one component to

another. In fact, all the databases along any path that relate two components should be

used together to increase performance. For example, another relationship between the ma-

nipulator and gripper is the reachability, which stores an easily indexable map of which

parts of the robot’s workspace can be reached by the gripper (Section 4.3). We also define

a reverse-indexable map that relates where the robot base should be placed in order to

Figure 2.4: The robot and task knowledge database stores relationships between two or more
components. The relationships are color coded where green represents task-related relations while
blue represents robot-related relations.

achieve a particular gripper configuration (Section 4.4).

The task specification is mostly responsible for relating the target object to the gripper

and camera. It allows us to construct the following relations:

• A pose recognition program taking camera images and producing a list of object loca-

tions within it, further discussed in Chapter 7.

• A map showing how the object detection relates with camera direction and distance,

discussed in Section 4.7.

The main purpose of the models we identify and build for the manipulation framework

is to make the planning and vision problems computationally tractable during runtime.

Furthermore, we show how gathering statistics about these relations can allow us to prioritize

the search spaces in the planners, and can lend themselves to optimizing the design and

placement of a workplace for industrial settings.

Figure 2.5: The levels of an execution architecture and a description of their inputs and outputs.

2.4 Execution Process

A common pattern for systems is to divide the execution of a plan into a global path planning

component and a local feedback component that follows the global path while adjusting

for local errors. In fact, a hierarchical arrangement of processes is very important when

considering low-level reactive behaviors and high-level goal completion behaviors. Figure 2.5

shows an outline of the four-level hierarchy used to organize the processes. The highest task

planning component concentrates on finding the order to perform manipulation primitives,

so it has the slowest update rate of the system. Inside each motion primitive is a process to

capture a snapshot of the environment and search for a feasible path that achieves the goal.

The global paths are usually rough and use simulation to predict the future. Because such

plans last up to a couple of seconds, the update rate is typically on the order of 1-5Hz. Then

the global path is inserted into a sensor feedback loop which directly outputs robot position

and velocity commands on the order of 5-100Hz. The purpose for the local modification

phase is to maintain robot safety and stability while following the given path. The lowest

level is the controllers that convert the position and velocity commands into motor torques

while considering the robot dynamics and tight sensor feedback loops.

One very popular approach to manipulation is to tightly integrate dynamics and sensory

feedback processes into the execution processes [Drake (1989)]. Such feedback is especially

important when making contact with the environment where it is easy to get jammed due to

undesired contacts and unknown friction properties [Mason (2001)]. Furthermore, machine

learning can play a major role in quickly mapping the sensor inputs to torque outputs for

compliant and operational-space control [Peters and Schaal (2008)]. Each of these sensory

feedback modules constitute the lowest level in Figure 2.5 where torques are directly pro-

duced from the inputs. Even though these research directions have produced many unique

and human-like robot behaviors, we argue that geometric analyses are still crucial to automa-

tion and unavoidable regardless of how many sensor feedback loops there are. The presented

manipulation framework can quickly determine the environment topology and compute ex-

plicit goals for the entire robot configuration. Having such a toolset allows the operational

space control to continuously compute the best goals while maintaining its given constraints.

It is possible to view the execution process from a task-level perspective. Figure 2.6

shows a flow chart for completing a manipulation problem by defining four types of planning

situations that control the execution flow:

1. Searching for the object. In the beginning, the robot first searches for the object

and once found, plans for a closer robot configuration where the object pose can be

better estimated. Methods can involve moving the robot randomly until an object is

found or moving to maximize information [Hollinger et al (2009); Saidi et al (2007)].

Regardless of the method, the output of the module should be a rough location of the

object.

2. Approaching the object. Once a rough location is found, the robot should plan

to move toward the object so that its sensors can observe the object unobstructed

(discussed in Chapter 5). As the robot gets closer to its target, the new environment

information could change the visibility of the target, so the planner should be called

again. This step requires knowing the properties of the object detector, the (inverse)

kinematics of the robot arm, and the location of the visual feedback sensor.

3. Grasping the object. Once a better estimate of the target object pose is achieved,

the system should start considering potential collision-free ways to grasp the object

(Section 3.3). Since the robot is already close to the object and the arm is directly

looking at it. As an alternative to open-loop grasping, we present a stochastic gradient-

descent algorithm to approach the object while considering changing grasps (Section

5.3.1). The planner should simultaneously consider the possible grasps and maintain

visibility constraints necessary for continuing to track the object. If the goal position

Figure 2.6: The steps necessary for executing the target tasks.

is known at this time, each grasp can be also validated by checking for the existence

of a feasible goal robot configuration.

4. Moving the object. Once the object is successfully grasped, the planning framework

switches to maintaining any specific task constraints and move the object to its goal

region. Task constraints can include not tipping the object [Stilman (2007)] or moving

the object along a hinge [Diankov et al (2008b)]. During robot movement, an execution

monitor validates the robot configuration with the current environment estimate.

Each of these steps requires the perception modules to constantly run and generate a map

of the environment and target objects. In order to take a snapshot of the environment state

at a particular instance in time, each sensor needs to timestamp its data. All perception

algorithms maintain this timestamp when publishing their data out to other modules. For

every time instance, all sensor data are combined with the robot position at that time and

Figure 2.7: Example of localization in a 3D map using a camera.

transformed into the world coordinate system. This allows sensors to be attached anywhere

on the robot without any coordinate system confusion. The should be constantly publishing

their data regardless of how it is being processed, this independence on the system state

simplifies many start and stop events and making it much easier for users and robots to work

with. Most sensor algorithms publish at 10Hz or lower, therefore most of their computation

can be offloaded onto a server of computers, which greatly reduces the requirements of load

balancing.

We rely on range data from stereo or laser range finders for sensing the environment

obstacles. The laser range data is used to accumulate a run-time obstacle map. This data

is then processed in the world coordinate system to fill holes and create collision obstacles

like boxes that are easier to use than point clouds [Rusu et al (2008)]. Processing the data

in the context of manipulation is discussed in Section 4.6.2.

Very frequently in robotics, there is a map of the environment that the robot can use

to navigate from place to place. Sometimes generating the 3D geometry from raw sensor

data is too time consuming, so a 3D map is present that the robot can localize to. For

example, Figure 2.7 shows how a robot localizes with respect to the hand-crafted 3D kitchen

model using patterns randomly placed inside the real kitchen environment. The localization

module should publish the best expected robot position and its mean error.

For each different object type specified in the task, a pose recognition program will be

generated and will be continually running during the execution phase. Using this program,

we can gather in an offline phase all the directions from which the pose can be detected by

the camera (Section 4.7). This allows the planning process to prioritize robot configurations

that generate preferable views for the camera. In Chapter 7, we analyze object-specific

recognition programs and present several analyzes for automatic detection of good features

along with a new pose extraction algorithm. During runtime, each pose recognition program

will continuously publish the detected object types, poses, and the expected error on the

extracted pose. Because there can be a lot of overlap in the low-level feature sets used for the

object detectors, we can separately run programs for each feature detector for each camera.

Navigation planning for indoor environments consists of creating an offline map with

SLAM and planning on the 2D plane considering velocities and the non-holonomic nature of

the robot base. Navigation and robot localization have been deeply studied in many other

works [Likhachev and Ferguson (2009); Ferguson (2006); Urmson et al (2008); Rybski et al

(2008)], therefore for this thesis we use already available navigation planning libraries from

Player/Stage [Gerkey et al (2001)] and ROS [Quigley et al (2009)]. On a segway mobile base

using a standard 2D laser range finder, they can usually move the base within 5cm of the

intended goal. The robot localization is within 2cm when using range data and 0.5cm when

using vision-based localization (Figure 2.7). Even when treating navigation as a black box,

finding the correct goal to give the navigation planner so that it can handle errors of 5cm

is vital to robust mobile manipulation. Nevertheless, the target objects always have to be

re-detected after the base stops. In Chapter 5, we motivate the use of cameras attached to

the gripper for the final reconfirmation phase. Gripper cameras allow very accurate results

of the entire process.

There are two main ways to achieve robust grasping, and we choose a combination of

the best of both worlds in the manipulation framework. The first way is to make the

grasps themselves as robust as possible to errors in perception. In Section 4.2 we discuss a

repeatability metric that allows us to measure if a grasp can slip or not based on simulated

noise. The second way requires careful positioning of the gripper with respect to the object

using visual servoing techniques, or otherwise the gripper might push the object out of

the way and fail the grasp [Prats et al (2008a); Jain and Kemp (2008)]. However, visual

servoing first requires the camera to view the object. In Chapter 5 motivate the need for

sampling robot configurations that can achieve object visibility in the camera field of view

before we begin to grasp it. Our technique is just as effective as visual servoing, except

it does not rely on fixed grasps and to maintain visibility constraints as the robot moves

throughout the scene. In most cases the object is static in the environment, and so viewing

the object once as close is possible is more than enough to get a good accurate statement.

By combining the repeatability metrics in grasping and the visibility sampling, we can assure

very reliable grasping without needing to analyze perfect sensor-less grasping algorithms or

always maintain visibility.

2.5 General Guidelines for Autonomy

Our goal is to define a very conservative set of guidelines for autonomy that help us decide the

necessary level of sensing and feedback required for manipulation systems. Because the level

of autonomy of a system is dependent on the assumptions made on the problem, autonomy

has become a very ambiguous term in robotics literature. If autonomy is considered to be

the ability to deal with changes in a problem/environment/system, then we can look at

the autonomy of the our framework as a whole in being able to deal with any robots and

tasks as defined in Section 2.1, or we can look at the autonomy of our presented execution

architecture in dealing with runtime changes. To eliminate the ambiguity, we only talk about

autonomy guidelines with respect to the execution system of the robot in performing the

specified tasks.

Environment Complexity

We define the maximal complexity on the environment geometry and its changes.

1. The system should be able to handle most living and factory environments as long as

the obstacle regions can be confidently extracted and are well defined. Environments

where it is not possible for the robot to reach its target objects without having to

move or touching anything should not be considered. Interacting in such environments

requires the robot to have a higher level reasoning module, which is not part of the

task specification (Section 2.1.1).

2. The environment lighting should be similar to the training data given by the task

specification. The system should not have to adjust to lighting changes or unexpected

sensor data from difficult environments.

3. The robot should be able to compensate for changes in the environment within several

seconds of the change.

Sensor Uncertainty

We define the extent to which the robot should monitor and recover from execution and

calibration errors.

1. Robot should reason about target object observability and guarantee extents on pose

uncertainty.

2. The noise for sensors measuring distances to obstacles should be modeled. A robot

should treat any unexplored region as an obstacle and should give obstacles safe bound-

aries.

3. Robot should automatically detect when sensor calibration is off.

4. Robot should continually validate its current position with the expected goal position.

If goal position is defined with respect to an object’s coordinate system, that object

has to be continually detected.

Error Recovery

We define the extent in which a robot should be able to recover from errors. In all cases, the

robot hardware and computational framework should be fully functional at all times; we do

not expect the robot to perform introspection [Morris (2007)] and detect and recover from

internal problems.

1. If an obstacle or other object blocks another target object, wait for the target object

to become available or choose another target.

2. If an obstacle or other object blocks the robot path, restart the planning process,

locally modify the trajectory, or wait.

3. If the robot becomes stuck during a trajectory because of an obstacle collision, restart

the planning process.

4. If a target object moves before grasped, the robot should compensate for the change

or restart the planning process.

5. While the object is grasped, continually monitor the grasp and restart the planning

process if object is lost.

6. Confirm the object is at destination once placed there.

2.6 Discussion

In this chapter we covered the outline of the manipulation architecture and discussed how

all elements relate to each other and where our contributions lie within the framework. We

defined a set of robot and task specifications that represent all domain knowledge being

injected into the system. Then we presented a set of functional modules of a system that

can achieve all requirements. Unlike other systems, we specifically make the goal generation

process a module. It analyzes the scene and determines where a robot should go in order

to achieve its higher level goals. In previous systems, most of these goals came from a

person manually specifying handles or other workspace parametriztions. We also presented

a robot component-based view of the manipulation system. Each component like the robot

arm serves a particular purpose in the plan. Relations between these component allow us

to formalize what information a particular task relies on. This analysis helps us define the

planning knowledge-base in Chapter 4 that organizes and tracks all possible offline relations

between the robot components we defined.

We also discussed the rough execution outline and the steps the robot takes in order

to complete the manipulation plans. Each of these high level steps are decomposed into

a set of primitive planner calls whose theory is covered in Chapter 3. We discussed many

of the practical issues encountered when executing the manipulation pipeline. Through

this discussion, we revealed the requirements for each of the components and discussed the

trade-offs that have to made in order to get them to work.

We closed this section with several general guidelines of robot autonomy. For many

different research groups, the definition of an autonomous robot differs, which causes a lot of

confusion when comparing results between frameworks. The guidelines on autonomy defines

the basic assumptions of the scene and environment, all algorithm developed to support this

thesis are designed with them in mind. Eventually, we hope that such simple prerequisites

can serve as the basis for a formal definition of levels of autonomy. Such a taxonomy will

greatly help in comparing robotics architectures. However, it will only become possible once

the process of combining all components of a robot system becomes as simple as installing

an operating system and setting up a computer network on it. But even before such a time

will come, it is necessary to understand all the elements in the most basic and fundamental

level.

Chapter 3

Manipulation Planning Algorithms

Motion planning is responsible for finding a path in the robot configuration space between an

initial configuration to a goal-satisfying configuration while maintaining constraints on the

search space. The primary contributions of this chapter are to introduce a set of planning

algorithms specific to manipulation planning and define how a planning knowledge database

can be used within the framework of these planners. We divide a planner into two compo-

nents: a generator for feasible, goal-satisfying robot configurations, and a search algorithm

that explores the feasible space and composes the robot path. Even though the space of all

search algorithms is infinite, we only concentrate on the Rapidly Exploring Random Trees

[LaValle and Kuffner (2001); Kuffner et al (2003); Oriolo et al (2004)] and A* [Ferguson

and Stentz (2004, 2005); Diankov and Kuffner (2007)]. RRTs have been shown to explore

the feasible solution space quickly, so they are ideal for high dimensional search spaces like

manipulator arms. On the other hand, A* algorithms give more power to heuristics to guide

the search and are used for problems whose state space is much smaller. In order to spe-

cialize a planner to the task and robot specification, we present modifications to the goal

space definitions and state space samplers. The driving principle in the planning framework

is that giving a search algorithm informed configurations that get the robot closer to its

goal is a much more important capability than being able to efficiently search through many

uninformed configurations.

In this chapter we define the planning framework and specifically delve into the search

components of planning algorithms. The search components are the static code that stays the

same throughout different tasks and robots. We start with the overall algorithmic structure

and show the role of the robot knowledge database as discussed in Chapter 4. Furthermore,

we cover the general case of mobile manipulation when considering the complexities of grasp-

ing and visibility goals. A pattern that becomes quickly apparent in the planning algorithms

33

Figure 3.1: Shows the connection between the robot databases when used for manipulation and
grasp planning. The most involved and important process is sampling the goal configurations while
taking into account all constraints and task priorities.

we cover is that the way goals and heuristics are defined and used can have a bigger effect on

the planning process than search algorithms themselves. In fact, all task-specific information

is encoded in the databases, so it would be natural to expect databases to take a lead role

in influencing the search.

3.1 Planning in Configuration Spaces

Figure 3.1 shows the structure and information considered in the goal samplers and how the

role the planning algorithm plays in. We heavily rely on goal configuration samplers that

give hints to the search system as to where to focus exploration. There are three major goal

configuration samplers shown in Figure 3.1:

Figure 3.2: Shows the environment distances for every point on the object surface (blue is close,
red is far).

• a generalized grasp sampler discussed in this section,

• an inverse kinematics sampler used to relate the work and configuration spaces, and

• a sensor visibility sampler discussed in Chapter 5.

In order to make the most informed decisions, the following elements should be considered

in the manipulation planning process:

1. Reachability - Stores a density map measuring how close the gripper is to a position

that the robot arm can actually move to (Section 4.3).

2. Grasp Ranking - Ranks grasps depending on how probable they are to be reached by

the robot. The ranking involves evaluating the environment around the object (Figure

3.2) along with using the reachability density map.

3. Target at Goal Scene - If the task involves placing the object in a particular location,

then we must ensure that the gripper can actually fit in this location. By having the

a second scene with the predicted object goal, we can validate if a grasp is achievable.

4. Grasp Validation - Once a grasp is picked, it should be checked for collisions and

consistency of task constraints. Checking if any links on the gripper collide with the

environment is the quickest check. Next we perform the grasp strategy and check to

make sure that the gripper only collides with the target object. If the gripper collides

with anything else, we cannot guarantee the object is grasped as it was predicted, so

the grasp should be rejected.

5. Base Placement Ranking - By inverting the reachability map, we can acquire a

density map of the base locations with respect to a canonical set of grasps (Section

3.6.1). This can be used to rank the base placements when searching for valid solutions.

Figure 3.3: An example of a breakdown of the manipulation configuration space of a task.

6. Final Robot Configuration - Base placements are sampled according to their rank-

ing and we check for the existence of collision-free inverse kinematics solutions.

Considering the above elements, we decompose the entire manipulation configuration

space C into four parts:

(3.1) q = (qbase, qarm, qgripper, qtarget)

where the gripper is responsible for interacting with the object, the arm is responsible for

precisely moving the gripper to its desired orientation, and the base is responsible for moving

the arm and gripper around the environment (Figure 3.3). For robots moving on a flat floor,

qbase is 3 DOF and represents the translation and in-plane rotation. If the target is attached

to the environment and has a door, then qtarget is the angle of the door; otherwise, qtarget
represents the workspace of the target. qarm and qgripper are the joint values. Usually the

gripper is treated as in independent articulated body, whose transformation is the referred to

as the end-effector of the arm. Even before defining the goal of the plan, the decomposition

of the space immediately raises questions about:

• what are all inter-relationships between the four components,

• what is the order in which the four components should be searched, and

• how these spaces connect to the real world execution of the plan.

For example, the forward kinematics relationship between the arm and gripper is clear,

but it is common for planners to use inverse relationships: given the gripper position, com-

pute the configuration qarm placing the gripper there.

If planning for mobile manipulation, then the question can turn out to involve all com-

ponents: given a target location qtarget, what are all possible configurations qbase such that

the target is graspable.

Figure 3.4: Grasp planning involving just the arm and gripper can sometimes require both the
grasp and release goals to be considered before a grasp is chosen..

Because the search space is very big, it becomes very difficult to guarantee an optimal

solution; therefore samplers, heuristics, and hierarchical subdivision of the problem have

great influence over the quality and computability of a solution. For example when finding

a feasible path to a graspable location, should the robot base be sampled first, which affects

the grasps that can be achieved, or should the grasp be sampled first, which affects the

base placements? If the goal is also to place the grabbed target to a specified location

as shown in Figure 3.4, then it becomes necessary to consider the feasibility of the path

and goal configuration of the release process so that a robot doesn’t choose a bad grasp

to begin with only to discover that it cannot achieve its final goal. Instead of delving into

the search complexities of planning horizons as in [Stilman et al (2007b)], we perform most

of the computation inside the goal-configuration samplers, which use the inter-relations of

the configuration space to make the most informed decisions. The theory and generation of

these relations are covered in the robot knowledge database.

3.2 Planning to a Goal Space

A planning algorithm takes an initial robot configuration and attempts to find a path to a

goal-satisfying configuration while maintaining constraints. These constraints define a subset

of the configuration space C = {q} that represents the set of feasible and free configurations,

commonly denoted by Cfree. The goal satisfying configurations can be similarly denoted by

a sub-space Cgoal ∈ Cfree. Because Cfree and Cgoal can be very complex, most of the planning

literature focuses on how to efficiently represent and search this space for a solution path.

Algorithm 3.1: RRTConnect*(qinit)

/* ρ ∈ [0, 1] - uniform random variable */

Init(Ta, qinit); Init(Tg, Sample(Cgoal)); Tb ← Tg1

for iteration = 1 to N do2

if ρ ≤ GoalSampleProbability() then3

AddRoot(Tg,Sample(Cgoal))4

qnew ← Extend(Ta,Sample(Cfree))5

if qnew 6= ∅ then6

if Connect(Tb,qnew) then7

return Path(Ta,Tb)8

Swap(Ta,Tb)9

end10

return ∅11

It is also possible to fit dynamics and time-sensitive information into this definition [Harada

et al (2008); Kuffner et al (2003); Hauser et al (2008); Stilman et al (2007a); Berenson et al

(2009a)].

Although, several works have shown the possibility of planning without sampling explicit

goal configurations [Bertram et al (2006); Diankov and Kuffner (2007)] by using gradients

and cost functions, the planning process becomes much slower thus making it a worthwhile

effort to develop explicit goal configuration generators. Traditionally, planning algorithms

have assumed Cgoal is either one specific goal configuration, or a set of configurations with a

distance threshold defining how close to the goal a robot should get in order to terminate

with success. However, many researchers cite the possibility of Cgoal being so complex that

the only way to accurate use it in a planner is by random sampling. For example, the goal

of manipulation planning is to have the gripper interact with the target object, meaning the

goals are specified in the workspace of the gripper and not directly in the configuration space

being searched for. It is this type of discrepancy that motivates a periodic random sampling

of goals during the search process.

RRTConnect* (Algorithm 3.1) shows the modifications to the RRT-Connect algorithm

[Kuffner and LaValle (2000)] that samples goals. The algorithm maintains a tree of configu-

rations, with edges representing the ability for the robot to move from one configuration to

the other. In every step the RRT randomly grows trees simultaneously from both the initial

and goal configurations by first sampling a random configuration and then extending both

trees to it using a step size ε. After every extension operation, the planner checks if the two

Algorithm 3.2: SampleWithConstraints(C)
while true do1

q ← ProjectConstraints(fC ,Sample(C))2

if q ∈ C then3

return q4

end5

Algorithm 3.3: ExtendWithConstraints(T ,q)

/* Uses definitions from [Kuffner and LaValle (2000)] */

qnear ← NearestNeighbor(q,T)1

qnew ← ProjectConstraints(fC ,NewConfig(q,qnear))2

if qnew ∈ Cfree then3

AddVertex(T ,qnew)4

AddEdge(T ,qnear,qnew)5

return qnew6

return ∅7

trees can be connected and a path is computed. With probability GoalSampleProba-

bility(), a goal configuration is sampled and inserted into the goal tree. Planning with this

modification is commonly done when the goal space is complex, with varying names given

to the algorithm depending on how the Sample function is defined [Stilman et al (2007b);

Brock et al (2008); Berenson et al (2009b); Diankov et al (2009)]. It should be noted that

GoalSampleProbability() can change with respect to how many goals have already been

sampled and how well the planner is progressing, a constant probability might not be the

best decision. The resulting paths from an RRT planners are notorious for being jagged and

unnecessarily long. Almost all researchers add a path-smoothing phase as a post-processing

step to the resulting paths. The linear short-cut method of joining two points on the path

with a straight segment is the most commonly used. Recent results show that it is possible

to also apply this to piecewise-quadratics [Hauser and Ng-Thow-Hing (2010)].

Some problems require the motion of the robot or the object to follow specific geometric

and kinematic constraints. Although the simplest method of sampling valid configurations

is to reject those that do not meet the constraints, it takes a long time. If the constraints are

parameterizable by a function fC(q) = 0, then gradient descent using δfC
δq

allows projection of

any invalid configuration q to a valid configuration. Such projection operators can be inserted

in planners to allow a robot to open doors [Kojima et al (2008)], maintaining orientation of

target objects [Stilman (2007)], slide objects along a surface, or compliant whole-body hu-

manoid control [Sentis (2007)]. Although we will not delve further into projection operators

and trade-offs with sampling, we do go over two modifications required for RRTs to work

with constraints. The first is the sampling function that uses a projection operator defined

in SampleWithConstraints (Algorithm 3.2). Because the projection does not take into

account the entire free space of the problem, we check that the configuration is still in C.
The second modification is in the extend operation defined in ExtendWithConstraints

(Algorithm 3.3). Before any configuration can be added to the tree, it always makes an

explicit check on the free space.

Using this structure, there are four components that play a key role in the search algo-

rithms we discuss:

• A sampler on the feasible configuration space Sample(Cfree). The free space describes

where the system can safely go, but it doesn’t provide any information about its neigh-

boring locations. By defining a state space cost function, we can use it to prioritize

sampling of regions that will most likely contribute in finding the path.

• A distance metric δ(q0, q1) for C used to methodically discretize and step through the

configuration space. Distance metrics are commonly used for two purposes: finding

nearest neighbors and finding the appropriate step resolution for RRT extensions and

line collision checking [Cameron (1985); Schwarzer et al (2003)]. We present an auto-

mated way of setting distance metrics in Section 4.6.3.

• A sampler on the goal space Sample(Cgoal). Defining goals usually involves the

workspace and the reachability properties of the robot. We present a generalized

manipulation sampler in Section 3.1 involving both grasping locations and the robot’s

arm and base.

• A parameterized constraint function fC that allows the robot to continuously move

from one configuration to another. A ProjectConstraints(fC ,q) function modifies

the input configuration to the closest configuration that meets all the constraints.

Of the four, we primarily concentrate on goal samplers Sample(Cgoal) for the target task

types described in Section 2.4.

3.3 Planning to a Grasp

The key to successful manipulation planning is to choose a grasping strategy and move to

observe the target of the task so that execution is informed of the surroundings. Reaching

and grasping the target object requires multiple pieces of information, including: knowledge

of the robot kinematics, robot geometry, the gripper capabilities, the grasping strategy of

the target, and the environment obstacles that must be avoided. For example, the grasping

strategy can be manually specified through task frames [Prats et al (2007a,b)] or grasp

handles [Gravot et al (2006); Okada et al (2004)], or can be automatically constructed by

considering the geometry of the gripper/target pair and searching for a stable grasp [Ciocarlie

et al (2007); Goldfeder et al (2007); Berenson et al (2007)] or a caged grasp [Sudsang et al

(1997); Diankov et al (2008b)]. These grasps can be parameterized by simple linear models

[Prats et al (2008b)] or by storing all instances of successful grasps in a set [Berenson et al

(2007); Diankov et al (2008a)] and planning with them simultaneously. In this section we

cover the theory on how to use grasp sets in the context of the entire plan, the computation

of grasps from a task description is covered in Section 4.2.

We define a grasp as:

• transformation of the gripper T targetgripper in the target’s coordinate system,

• starting joint values1, qgripper

• direction of approach vgripper =
[
vx vy vz 0

]T
in the target’s coordinate system, and

• minimum distance along negative direction to get out of collision δgripper.

We represent the space of all stable grasps as G, which includes the 6D pose of the

end-effector in SE(3), the grasp preshape, and the approach direction. From that space,

we extract a discretized ordered set Gstable that represents all stable grasps of the object.

Gstable is used for finding goal configurations of the end effector and only concerns itself with

how the gripper links interact with the target object. At any target configuration qtarget, we

denote the grasp set in the world frame by

(3.2) Tworld(qtarget) ◦ G

where the gripper transform and direction of approach are transformed by Tworldtarget(qtarget).

The world grasp set allows inverse kinematics and other robot maps to be applied to the

object.

Pre-ordering grasps in the set is one way of prioritizing which grasps get tested first;

however, we should make it clear that the grasp order is only dependent on stability and

not on the environment or the robot arm/base. Potential ordering methods are discussed in

Section 4.2.

Before a grasp from G can be determined valid in the current environment, it needs to

be collision-free from other obstacles, it needs to be tested for successful completion of the

1Commonly referred to as the gripper preshape.

Figure 3.5: Shows examples of collision-free, stable grasps that are invalid in the environment.

Algorithm 3.4: GraspValidator(Tworldgripper,q,v
world,δ)

SetConfiguration(gripper,q)1

/* Check collision with gripper along negative direction. */

GripperTransforms ← ∅2

for d ∈ [δ, δ + ε] do3

T ←
[
I3x3 −dvworld

0 1

]
Tworldgripper

4

SetTransform(gripper,T)5

if CheckCollision(gripper) then6

return ∅7

Add(GripperTransforms,T)8

end9

SetTransform(gripper, Tworldgripper)10

qnew ← GraspStrategy()11

SetConfiguration(gripper,qnew)12

if AllCollisions(gripper) ⊆ {target} then13

return GripperTransforms14

return ∅15

grasp strategy GraspStrategy(qgripper)), and it needs to have small room to maneuver

along its direction of approach. Figure 3.5 shows examples of collision-free grasps that are

not valid and all must be pruned.

All grasps in Gstable are validated using the GraspValidator function as described in

GraspValidator (Algorithm 3.4). First the gripper is set to its preshape and checked for

environment collisions as it moves along its negative direction of approach. ε is proportional

to the error expected on the object’s pose and the robot execution2. Then the gripper is set

to the final transformation and the grasp strategy is executed in simulation. Because the

grasp strategy guarantees stability only if the gripper’s contacts are from the target object,

we check that all collisions with the final gripper configuration are only with the target

using AllCollisions and the space inclusion operator ⊆. It is possible to just check the

gripper collisions since we know its joint values qnew and its workspace transform Tworldgripper.

On success, GraspValidator returns the set of gripper transformations that are collision

free. When planning for just the arm, these transforms are later checked for the existence of

inverse kinematics solutions.

In order to maintain clarity, we assume that every function presented saves the state of

all objects it interacts with and restores it upon returning. The state in this case is each

link’s position, orientation, and collision-enabled values.

The simplest form of grasp planning is when the configuration space is {qarm, qgripper},
and inverse kinematics can be directly applied to find the goal configurations. The first

goal sampling algorithms using grasp sets is presented in GoalSampler Grasps Arm

(Algorithm 3.5). It first samples a grasp from Gstable and validates it with the current

environment. The set of transforms returned by GraspValidator are all checked for

inverse kinematics solutions and that they entire robot configuration is in the free space. If

there is a grasp transform that does not have a solution, then the robot will not be able to

complete the task and the grasp is skipped. Otherwise, the transform δ + ε distance away

from the original grasp is taken as the goal to feed to the RRT planner. This distance is

extremely important in making the planning robust to errors when executing on a real robot.

Given a target end-effector transformation, we define the set of robot configurations qarm
that achieve it with

(3.3) IK(T) = { qarm | T = FK(qarm) }

where FK(qarm) is the forward kinematics transforming robot configuration. For each in-

verse kinematics solution produced by IK(T), we check it for the free space and return it the

arm and gripper configuration to the planner. The next time GoalSampler Grasps Arm

is called, it should resume from the point it left off instead of starting from the same grasp

again. In practice, this programming construct can be easily implemented with coroutines

[Knuth (1973)] or Python generators without changing the function.

Using the environment in Figure 3.4, the size of the Barrett Hand/mug grasp set is 341.

The time it takes to sample one valid goal configuration is 0.04± 0.01s. It is actually very

2Usually set between 1cm and 2cm

Figure 3.6: Divides the grasps that pass GraspValidator into the set of reachable (has inverse
kinematics solutions) and unreachable grasps for one target.

Algorithm 3.5: GoalSampler Grasps Arm()

SetConfiguration(gripper,q)1

for (target, T targetgripper, qgripper, v
target, δ) ∈ Gstable do2

GripperTransforms ← GraspValidator(TworldtargetT
target
gripper, qgripper, T

world
targetv

target, δ)3

/* Validate all gripper transforms. */

if ∀T∈GripperTransforms, ∃ qarm s.t. qarm ∈ IK(T)
∧

(q, qgripper) ∈ Cfree then4

T ← LastElement(GripperTransforms)5

for qarm ∈ IK(T) do6

if (qarm, qgripper) ∈ Cfree then7

return (qarm, qgripper)8

end9

end10

common for the GraspValidator to return grasps that are completely unreachable by the

robot. Figure 3.6 shows an object that is slightly far away from the robot, of the 120 grasps

that are accepted by the GraspValidator, only 11% have inverse kinematics solutions.

The entire planning phase to the initial pickup is 0.7± 0.1s.

As was mentioned previously, it is also necessary to consider the possible destinations

of the target during the grasp selection process. Every possible target destination has to

be checked for possible collisions with the target object, gripper, and arm. GraspValida-

tor WithDestinations (Algorithm 3.6) shows the entire grasp validation process. The

destination check requires the target to be moved temporarily to that location in order

to accurately simulate the expected collisions. Collisions with the robot are ignored since

Algorithm 3.6: GraspValidator WithDestinations(target,Tworldgripper,q,v
world,δ)

GripperTransforms ← GraspValidator(Tworldgripper,q,v
world,δ)1

if GripperTransforms 6= ∅ then2

for Ttarget,new ∈ TargetDestinations do3

SetTransform(target,Ttarget,new)4

if AllCollisions(target) ⊆{robot} then5

Tworldgripper,new ← Ttarget,newT
−1
targetT

world
gripper6

if ∃ qarm s.t. qarm ∈ IK(Tworldgripper,new)
∧

(qarm, q) ∈ Cfree then7

/* IK exists and target is collision-free. */

return GripperTransforms8

end9

return ∅10

Figure 3.7: Shows all the valid, reachable grasps that can be sampled from simultaneously. The
grasp set size is 341 and there’s 6 target objects for a total of 136 valid grasps.

the correct robot configuration is not set at that point. It should be noted that the inverse

kinematics check is only valid if just planning for the arm. When planning for the base, it

becomes very difficult to consider robot reachability, so these types of checks are handled

elsewhere as discussed in Section 3.6. Using the environment in Figure 3.4 where there is

102 potential target destinations, the average time to sample a configuration is 0.2± 0.1s.

The goal sampler itself can easily consider multiple targets simultaneously by creating a

super-grasp set as shown in Figure 3.7.

Even with such a straightforward goal sampler, we can immediately start seeing potential

bottlenecks that could slow down planning. For example, the set of grasps might be too big

(more than 1000+ grasps), so need to prioritize or sample them well so valid grasps are

tested first. We have to be careful that the prioritization function doesn’t require a lot of

Figure 3.8: Several robot arms performing grasp planning.

computation. Another common problem is that the GraspValidator does not consider

inverse kinematics, but some grasps are obviously not reachable as was shown in Figure 3.6.

In [Berenson et al (2007)], we used an ad hoc method to determine if a grasp is reachable,

however a much quicker and more formal method is using the reachability space of the robot

to prune grasps (Section 4.3).

Figure 3.8 shows other robots performing the same grasp planning task with all param-

eters auto-generated from the robot knowledge-base.

3.4 Planning with Nonlinear Grasping Constraints

For a large class of constrained tasks that deal with objects part of the environment like door

opening, the robot end-effector does not have to be rigidly attached to the object throughout

the entire motion. In fact, as long as the object is caged [Rimon and Blake (1986); Rimon

(1999)] by the end-effector, moving the end-effector can produce a corresponding motion of

the object. In other words, there exists a grasp space the end-effector can reside in such that

the target object desired motion can be achieved, while greatly increasing Cfree providing the

robot motions that were not possible before. We present an algorithm that can effectively

change grasps while attempting to move a constrained object as shown in Figure 3.9.

In [Diankov et al (2008b)], we presented a novel motion planning formulation for per-

forming constrained tasks such as opening doors and drawers. Previous work on constrained

manipulation transfers rigid constraints imposed by the target object motion directly into

the robot configuration space. This often unnecessarily restricts the allowable robot motion,

which can prevent the robot from performing even simple tasks, particularly if the robot has

limited reachability or low number of joints. Our method computes caging grasps specific

to the object and uses efficient search algorithms to produce motion plans that satisfy the

task constraints. This method can significantly increase the range of possible motions of

Figure 3.9: A robot hand opening a cupboard by caging the handle. Space of all possible caging
grasps (blue) is sampled (red) along with the contact grasps (green).

the robot by not having to enforce rigid constraints between the end-effector and the target

object. We illustrate our approach with experimental results and examples running on two

robot platforms.

The expanded range of motion comes at the cost of algorithmic complexity. In the

absence of a rigid grasp, care must be taken to ensure that the object does not slip out of

the robot end-effector. Of greater concern is the fact that there no longer exists a one-to-one

mapping from robot motion to object motion: since the object is loosely caged, there can

exist end-effector motions that produce no object motion, and object motion without explicit

end-effector motion.

3.4.1 Relaxed Formulation

We formulate the problem using the configuration space of the robot arm qarm ∈ Qarm , the

configuration space of the end-effector g ∈ G, and the configuration of the constrained target

object qtarget ∈ R. Each of these spaces is endowed with its corresponding distance metric

d : X × X → R. As in the previous sections, g contains the 6D pose of the end-effector in

SE(3). Although our presented method is general enough to include the gripper preshape

in the grasp configuration, for this analysis we assume that the preshape qgripper is fixed.

In the relaxed task constraint formulation, each target object is endowed with a task

frame which is rigidly attached to it, and a set of grasps G represented in that task frame.

The set G is carefully chosen to ensure that any grasp is guaranteed to cage the object. If

we define Rg to be the set of target configurations reachable under a grasp g, then the target

at configuration qtarget is caged by the robot if qtarget ∈ Rg ⊂ R and every point on the the

boundary of Rg is in collision with the end-effector at pose g. Although this is a conservative

definition of a cage, it is necessary because end-effector is the only physical body known with

certainty and caging should be environment independent.

In congruence with the traditional task constraint formulation, we describe the pose of

grasps in G with respect to a coordinate frame that is rigidly attached to the object, termed

the task frame. A transform Tqtarget relates the task frame at an object configuration qtarget
to the world reference frame. The utility of this representation arises from the observation

that, under a rigid grasp, the pose of the end-effector is invariant in the task frame. This

allows us to compute and cache Gstable offline, thereby improving the efficiency of the online

search. Similar to Equation 3.2,we denote the new grasp transformation of a given target

configuration qtarget as:

(3.4) TqtargetG = { Tqtargetg | g ∈ G }.

One of the relaxed planning assumptions is that the end-effector of any configuration of

the robot always lies within the grasp set G with respect to the task frame. Because this

couples the motion of both the object and the robot during manipulation, their configurations

need to be considered simultaneously. Therefore, we define the relaxed configuration space

C as

(3.5) C = {(qarm, qtarget) | qtarget ∈ R, qarm ∈ Qarm, FK(qarm) ∈ TqtargetG}

In this case, Cfree includes (qtarget, qarm, qgripper). Given these definitions, the relaxed task

constraint problem becomes:

Given start and goal configurations qstarttarget and qgoaltarget of the object, compute a

continuous path {qtarget(s), qarm(s)}, s ∈ [0, 1] such that

qtarget(0) = qstarttarget(3.6)

qtarget(1) = qgoaltarget(3.7)

{qtarget(s), qarm(s)} ∈ Cfree(3.8)

FK(q(1)) ∈ Tqtarget(1)Gcontact(3.9)

Equation 3.6 and Equation 3.7 ensure that the target object’s path starts and ends

at the desired configurations. Equation 3.8 forms the crux of the relaxed task constraint

planning problem. Because the caging criteria dictates that each grasp be in the grasp set

G, Equation 3.8 ensures that any robot configuration q(s) produces a grasp FK(q(s)) that

lies in the world transformed grasp set Tqtarget(s)G. Equation 3.9 constrains the final grasp

to be within a contact grasp set Gcontact ⊆ G. This set is formally defined in Section 4.2.

Informally, any grasp in this set is in contact with the object and guarantees that the object

will not move away from the goal.

While the above equations describe the geometry of the problem, we make several as-

sumptions about the physics of the problem. These assumptions constrain the automatically

generated grasps we use for planning as well as the motion of the robot and object during

manipulation. Our analysis is purely quasi-static. The robot moves slow enough that its

dynamics are negligible. Furthermore, we assume that the object’s motion is quasi-static as

well. This can be achieved in practice by adding a dash pot to the hinges, damping their

motion, or by a sufficient amount of friction in the case of an object being dragged across a

surface. We also assume that we have access to a compliant controller on the robot. Under

this assumption, we are guaranteed that the robot will not jam or exert very large forces on

the object being manipulated. We discuss the generation of the caging grasp set in Section

4.2.2.

In the following sections we discuss the planning algorithms and robot results assuming

a grasp set has been generated. We describe two planning algorithms to solve the relaxed

constraint problem: a discretized version and a randomized version. The randomized algo-

rithm is more flexible and makes less assumptions about the problem statement, however the

discretized algorithm is simple to implement and useful for explaining the concepts behind

relaxed planning (as well as the motivation for a randomized algorithm).

3.4.2 Discretized Algorithm Formulation

The underlying assumption of the discrete formulation is that a desired path of the target

object is specified. Specifying the path in the object’s configuration space as an input to

the planner is trivial for highly constrained objects like doors, handles, cabinets, and levers.

The configuration space of these objects is one dimensional, so specifying a path from a to

b is easily done by discretizing that path into n points. In the more general case where an

object’s configuration space can be more complex, we denote its desired path as {qtarget,i}|n1
where each of the configurations qtarget,i have to be visited by the object in that order.

The discrete relaxed constrained problem is then stated as: given a discretized object

configuration space path {qtarget,i}|n1 , find a corresponding robot configuration space path

Algorithm 3.7: Q← DiscreteSearch()

for i = 1 to n− 1 do1

Gi ← Tqtarget,iG2

for g ∈ Gi do3

if (IKi,g ← IK(g)) 6= ∅ then4

break5

Gi.remove(g)6

end7

if Gi = ∅ then8

return ∅9

end10

for g ∈ Tqtarget,nGcontact do11

for qarm ∈ IK(g) do12

Qnext ← DiscreteDepthFirst(qarm, n− 1)13

if Qnext 6= ∅ then14

return {Qnext, qarm }15

end16

end17

return ∅18

{qi}|n1 such that

∀1≤i≤n (qtarget,i, qi) ∈ Cfree(3.10)

FK(qn) ∈ Tqtarget,nGcontact(3.11)

∀1<i≤n d(FK(qi−1), FK(qi)) < ε1(3.12)

∀1<i≤n d(qi−1, qi) < ε2(3.13)

where Equation 3.10 and Equation 3.11 constrain the end-effector to lie in the current

grasp set defined for the object and Equation 3.11 guarantees the final grasp is in contact.

To satisfy the continuity constraint on the robot configuration space path, Equation 3.12 and

Equation 3.13 ensure that adjacent robot and grasp configurations are close to each other.

A straightforward discrete planning approach to solve this problem is provided in Dis-

creteSearch (Algorithm 3.7). We begin by first running a feasibility test through the

entire object trajectory. This step is also used to initialize the grasp and kinematics struc-

tures used for caching. We assume an inverse kinematics solver is present for every arm.

Furthermore, if the arm is redundant the solver will return all solutions within a discretiza-

Figure 3.10: The basic framework used for planning discrete paths {qi}|n1 in robot configuration
space to satisfy paths {qtarget,i}|n1 in object configuration space.

tion level. We compute the set of contact grasps that will keep the object in form-closure

at its desired final destination qtarget,n (line 3.7). For each grasp in this set we compute IK

solutions for the complete configuration of the robot, and for each IK solution we attempt to

plan a path through configuration space that tracks the object path {qtarget,i} using depth

first search (line 3.7)3.

3.10 provides a diagram of the discrete search framework. Given an object path {qtarget,i}|n1
we search for a robot path {qi}|n1 that consists of a sequence of robot configurations qi, 1 ≤
i < n such that FK(qi) ∈ Tqtarget,iG and FK(qn) ∈ Tqtarget,nGcontact. Each of these configu-

rations qi is generated as an IK solution from one of the grasps in the grasp set Tqtarget,iG.

The depth first search process takes a robot configuration at a time step j and calculates

all the robot configurations that correspond to valid grasps at time j − 1 (i.e. are members

of set Tqtarget,j−1
G), then recursively processes each of these configurations until a solution is

found.

3.4.3 Randomized Algorithm Formulation

There are several disadvantages to the discretized algorithm. First, it is highly dependent

on the discretization level of the grasp set and IK solver. For robots with six degrees of

freedom or less, enumerating all IK solutions isn’t a problem. However, as soon as the joints

3This depth first search expands states in the same order as A* would using a heuristic function based
on (an underestimate of) the target object distance to goal.

Algorithm 3.8: {qobject,new, qnew} ← SampleNN(qtarget, qarm)

G← ∅, qnew ← ∅1

while qnew = ∅ do2

qobject,new ← RandomCloseConfig(qtarget)3

if not Exist(Gqobject,new) then4

Gqobject,new ← Tqobject,newG
′

5

gnew ← SampleWithoutReplacement(Gqobject,new)6

if gnew 6= ∅ then7

qnew ← SampleIK(gnew, q)8

else if CheckTermination() then9

return {∅, ∅}10

end11

return {qobject,new, qnew}12

increase or a mobile base is considered, the discretization required for IK(g) to reasonably

fill the null space grows exponentially. Second, the desired object trajectory is fixed, which

eliminates the possibility of moving the door in one direction and then another to accomplish

the task (see [Stilman et al (2007a)] for an example where this is required).

To overcome these limitations, we also applied a randomized planner to the problem.

We chose the Randomized A* algorithm [Diankov and Kuffner (2007)], which operates in a

similar fashion to A* except that it generates a random set of actions from each state visited

instead of using a fixed set. Randomized A* is well suited to our current problem because it

can use the target object distance to goal as a heuristic to focus its search, it can guarantee

each state is visited at most once, it does not need to generate all the IK solutions for a given

grasp, and it can return failure when no solution is possible. The key difference between

Randomized A* and regular A* is the sampling function used to generate neighbors during

the search. For our relaxed constraints problem the task of this sampling function is to select

a random configuration (qtarget,new, qnew) and a random grasp gnew ∈ Tqtarget,newG such that

qnew ∈ IK(gnew). Ideally, this should be done efficiently without wasting time considering

samples previously rejected for the same configuration. The A* criteria will ensure that

the same configuration isn’t re-visited and that there is progress made towards the goal, so

the sampling function needs only return a random configuration in Cfree around the current

configuration (qtarget, qarm) as fast as possible.

SampleNN (Algorithm 3.8) provides the implementation of the sample function. It first

samples a target object configuration qobject,new close to the current configuration qtarget (line

Figure 3.11: Comparison of fixed feasibility regions (left) and relaxed feasibility regions (right)
for the Manus and Puma robot arms.

3), then searches for feasible grasps from the new grasp set Tqobject,newG
′ (line 6), and then

samples a collision-free IK solution close to q (line 8). In order to guarantee we sample

the entire space, RandomCloseConfig should discretize the sampling space of the target

configuration so that the number of distinct qobject,new that are produced is small. This is

necessary to ensure that sampling without replacement is efficient. Each time a sample is

chosen (line 6), it is removed from Gqobject,new so it is never considered again, an operation

that takes constant time. If the target is close to its goal then G′ is the contact grasp set

Gcontact, otherwise G′ is the regular grasp set G. Once a grasp is found, SampleIK samples

the null space of the IK solver around q until a collision-free solution is found. If not, the

entire process repeats again. If all grasps are exhausted for a particular target configuration,

the sampler checks for termination conditions and returns false (line 9).

3.4.4 Experimental Validation

Relaxing task constraints through caging grasps has enabled real-world implementations

of constrained task execution using low DOF robots. We show experimental results on

the 6DOF Manus Assistive Robot Service Manipulator [Exact-Dynamics-BV (1991-present)]

and the 7DOF Barrett WAM [Barrett-Technologies (1990-present)], involving the tasks of

autonomously pulling doors and cabinets open at arbitrary placements of the robot base.

We compare our caged grasp planning approach to a traditional planner that enforces rigid

Set Size
Discrete
(Successes)

Discrete
(Failures)

Randomized
(Successes)

Randomized
(Failures)

6DOF Manus Arm 550 0.235 s 0.234 s 0.143 s 0.23 s
6DOF Puma Arm 300 1.49 s 0.043 s 1.83 s 0.028 s

Table 3.1: Statistics for the scenes tested showing average planning times (in seconds) and size
of the grasp sets used.

task constraints. The results shown in Figure 3.11 indicate that relaxing task constraints

through caging grasps provide a much a greater motion envelope for the robot as well as

versatility in base placement. This expanded range of allowable motions of the robot directly

results in: 1) improvements in the efficiency and the success rate of planning for a variety of

constrained tasks; 2) greater success in executing the desired motion and achieving the final

object goal state.

Discrete Randomized

6DOF Manus Arm 441% 503%
6DOF Puma Arm 130% 126%

Table 3.2: Increase in Feasibility Space when using relaxed planning compared to fixed-grasp
planning.

In each scene, the robot is randomly positioned and oriented on the floor, and then the

planners are executed. Thousands of random positions are tested in each scene to calculate

average running times (Table 3.1). The parameters for the randomized algorithm stayed

the same across all robots. To show that relaxed grasp sets really do increase the regions

the arm can achieve its task from, Figure 3.11 shows the feasibility regions produced with

the relaxed grasp set method and the fixed grasp method. The fixed grasp method uses a

single task-frame grasp throughout the entire search process. To make things fair, we try

every grasp in G before declaring that the fixed grasp method fails. Table 3.2 shows how

many times the feasibility region increased for the relaxed methods compared to the fixed

method. As expected, the lower dimensional manipulators benefit greatly from relaxed task

constraints. Furthermore, the door can be opened much further using the relaxed approach

than with the fixed grasp method.

Figure 3.12 shows experiments with several robots in simulation to show the generality of

the algorithm. Each grasp set was trained in a matter of minutes. Along with the analytic

Figure 3.12: Example simulations using the relaxed grasp-set planning formulation.

inverse kinematics solvers presented in Section 4.1, we can immediately get each of these

robots to open doors.

Figure 3.14 shows the grasp planning and caging grasp formulations combined to imple-

ment a more complex task. The task is to put a cup from the table on the right into the

cupboard on the upper left corner. The Barrett WAM first opens the cabinet to a specified

angle and then plans to grasp the cup while taking into account the geometric constraints of

the cup’s destination. Once the cup is placed inside the cupboard, the robot releases it while

making sure its fingers do not collide with the obstacles. Then it plans to a safe position to

move to its target preshape, and then closes the door.

Finally, it is possible to consider multiple preshapes and disjoint grasp sets to allow the

robot to change grasping strategies. For example, consider the top example in Figure 3.13

where a mobile robot is attempting to open a refrigerator as wide as possible. Because the

door handle makes a wide arc, it is impossible for the robot to open it all the way with just

a hook grasp. Therefore, we add push and pull grasps to do caging grasp definition: instead

of checking for caging in both directions, pushing and pulling requires that the object is

constrained in only one direction. The algorithm using disjoint sets is simple. First, we

randomly choose a disjoint grasp set and attempt to pull the door as wide as possible. When

Figure 3.13: WAM arm mounted on a mobile base autonomously opening a cupboard and a
fridge.

Figure 3.14: WAM arm autonomously opening a cupboard, putting in a cup, and closing it. Wall
clock times from start of planning are shown in each frame.

the door cannot be pulled any further and it still isn’t at its desired configuration, then we

choose another disjoint set and continue.

Figure 3.13 shows three different tasks that have become possible with pushing/pulling

and disjoint sets. Mobile bases usually have a ±5 cm accuracy in getting to their goal des-

tination; therefore, it becomes necessary to use the feasibility maps in Figure 3.11 to aim

the base to a dense probability region to avoid planning failures. Being able to explicitly

consider the feasibility regions can greatly help in designing the robot work space for indus-

trial situations. Furthermore, allowing grasps to change while planning for tasks that do not

require great precision can greatly increase the free space of the task. This increased space

can be used to allow robots with lower number of joints to complete the same tasks as more

complex, and expensive robots.

3.5 Planning with Free-Joints

Planning for a certain set of joints while treating the others as free is a sub-task that pops up

very frequently in manipulation planning. When grasp planning, it is really not necessary

to increase the planning configuration space to {qarm, qgripper} for the final goal path. If

there’s only a few variations of the grasp preshapes qgripper, then the robot can first plan its

arm to a position where it can freely move its gripper to one of the preshapes as shown in

Figure 3.15. After the robot achieves the preshape, the planner can just consider moving

the arm to the goal where the planning configuration space is just {qarm}. Combined with

the tremendous reduction in the free space, there are also several benefits in moving the

hand separately from the arm when considering the real robot hardware. It is very common

for the gripper and arm hardware systems in a robot to be controlled by separate real-time

loops and possibly separate hardware. This makes it a little difficult to tightly synchronize

trajectories that simultaneously move both the arm and the gripper, especially the path

approaches obstacles. By guaranteeing the gripper will not move during an arm trajectory,

we could relax the synchronization requirements on the hardware.

Algorithm 3.9: RRTExplore(qinit)

Init(T , qinit)1

for iteration = 1 to N do2

qfree ← Extend(Ta,Sample(Cfree))3

if qfree 6= ∅ then4

if CheckGoalCondition(qfree) then5

return Path(T ,qfree)6

end7

return ∅8

The free-joints problem is unique in that the robot has a small number of joints qfixed
that need to safely move in a desired path τfixed(t), but collisions can prevent them from

moving there. In order to solve it, we treat the rest of the joints as free and the problem

reduces into finding a robot configuration with the free joints where the fixed joints can safely

move along τfixed(t). This problem is also applicable to robot joints not directly in qarm and

qgripper like moving the torso joints in humanoid robots (Figure 3.16). The search itself

given in RRTExplore (Algorithm 3.9) just expands an RRT tree and checks if τfixed(t) is

achievable after every extension operation.

The more interesting part is in the termination condition function given by Check-

GoalCondition (Algorithm 3.10). The fixed joints are moved through all points in the

Figure 3.15: Shows a gripper whose fingers need to open, but cannot due to the table. Planning
by setting the free joints to the arm can move the gripper to a safe location to open its fingers.

Figure 3.16: The planner is also applied to moving the torso joints of the robot such that the
arms do not hit anything.

desired trajectory and the combined configuration with qfree is used to check for collisions

and other constraints. We would also like to guarantee that the links attached to the fixed

joints are not close to any obstacles at their goal configuration given by τfixed(1). The links

attached to the fixed joints are randomly moved by a small perturbation ∆ that defines a

ball around the workspace in which the fixed links should be collision-free. The attached

links for the fixed joints in Figure 3.15 all the gripper links. However, the attached links for

the fixed joints in Figure 3.16 are all the upper-body links since the torso joints affect all

of them. Therefore, GetDependentLinks returns all the rigidly attached and dependent

links of the fixed joints.

Algorithm 3.10: CheckGoalCondition(qfree)

for t ∈ [0, 1] do1

if {qfree, τfixed(t)} /∈ Cfree then2

return false3

end4

SetConfiguration(fixed,τfixed(1))5

Transforms ←GetTransforms(GetDependentLinks(fixed))6

for iteration = 1 to M do7

NewTransforms ← ApplyTransform(Transforms,RandomTransform(∆))8

SetLinkTransforms(GetDependentLinks(fixed), NewTransforms)9

if IsLinkCollision(GetDependentLinks(fixed)) then10

return false11

end12

return true13

Figure 3.17: When a robot is far away from its goal, it must also plan for moving its body along
with its arm. The robot should first find the possible grasps from which it can sample robot goal
locations. The planning algorithms will then join the two configurations.

As will be shown in later sections, we frequently extract dependent sub-parts of the robot

to make computations faster. Because the fixed joints are usually very few, we set τfixed(t)

as the linear segment that joints the initial configuration and the destination configuration;

in other words, no planners are involved in determining the fixed joint path. Using this

approximation, the total algorithm runtime itself is on the order of 0.1 s for example in

Figure 3.15, and 1.0 s for example on 3.16. The time greatly depends on the correct

discretization levels and scene complexity, which is why the humanoid case is slower.

3.6 Planning with Base Placement

The most general manipulation planning problem is when the robot has an initial estimate

of its target object and needs to also plan for a base placement that allows it to grasp the

object (Figure 3.17). Because the target object can be potentially far away from the robot

as shown in Figure 3.17, the robot cannot rely solely on its inverse kinematics functions to

determine feasibility of the grasps; it has to first sample a base placement and then test

for the existence of solutions. In this section we discuss two approaches to planning with

base placement. The first approach relies on an informative base placement sampler and

assumes that the robot can navigate to the sampled positions. This approach separates the

planning into a two stage navigate-and-move-arm process, so it has the advantage that it

does not require tight synchronization with the base and arm controllers. However, more

time will be wasted sampling good robot positions because it cannot guarantee the base

position is reachable by the robot. The second approach, which we call BiSpace planning,

adds simultaneous validation of the robot base path along with finding the correct grasp for

the target object. By uniquely combining work and configuration space searching, it has

the advantage of finding paths for much more complex situations than robots moving on a

2D floor. We first begin with sampling base placements before moving onto the planning

algorithms.

3.6.1 Base Placement Sampling

In the context of grasp planning, we would like to sample all possible base placements qbase
such that a grasp planning path with the arm and gripper is guaranteed to exist. Using the

relational graph in Figure 2.4, the path from Target Object to Robot Base passes through

grasp sets and inverting the reachability map of the arm. In Section 4.4 we present a grasp

reachability distribution that allows us to query the base placements given a set of possible

grasps corresponding to all target objects. The sampler

{qbase, qgripper,GripperTransforms} ← Sample GraspReachability(arm,G)

takes in the desired arm to move and the transformed world grasp set, and returns a base

placement sample along with all information about the grasp. The returned grasp is vali-

dated using GraspValidator (Algorithm 3.4) and therefore the gripper transforms are also

returned. In this section we cover its usage in the context of sampling base placements.for

planners.

Algorithm 3.11: GoalSampler BasePlacement()

for iteration = 1 to N do1

arm ← Sample(arms)2

G←
⋃
target T

world(qtarget) ◦ Gstable(arm, target)3

{qbase, qgripper,GripperTransforms} ← Sample GraspReachability(arm,G)4

SetConfiguration({base,gripper},{qbase, qgripper})5

if not IsLinkCollision(GetIndependentLinks(base)) then6

T ← LastElement(GripperTransforms)7

for qarm ∈ IK(T) do8

if (qbase, qarm, qgripper) ∈ Cfree then9

return (qbase, qarm, qgripper)10

end11

end12

GoalSampler BasePlacement (Algorithm 3.11) shows the final goal sampler includ-

ing base placement. The information used for sampling is: the poses of all the target objects,

the set of arms for grasping, a set of grasps for each target/arm pair, the inverse reachability

of each arm, and the obstacles in the environment. An arm is first sampled and all the grasp

Figure 3.18: Several configurations returned from GoalSampler BasePlacement considering
both robot arms, the humanoid’s torso, and multiple objects.

sets belonging to the gripper of that arm are transformed into the world and stored into

G. The reachability sampler lazily calls GraspValidator before committing to a certain

grasp; therefore the return grasp information is valid in the current environment up to the

gripper links. These grasps are them passed into the grasp reachability sampler, which re-

turns a potential base placement along with a chosen grasp. However, grasp reachability does

not encode obstacles in the environment, so any base placement it returns has to be validated

for collisions and inverse kinematics solutions. As an early pruning step, all links that are

dependent on the base, but not the arms are extracted with GetIndependentLinks(base)

and tested for collisions with the current environment. If links are not in collision, we start

iterating across all inverse kinematics solutions until a full base-arm-gripper configuration

inside Cfree is found.

Figure 3.18 shows the results of the goal sampler on a kitchen environment with a hu-

manoid robot and four target objects. The average time to produce one full configuration

is on the order of 0.5 s where six different arms are being sampled from. In order to prove

that grasp reachability can outperform randomized base placement sampling, we performed

several hundred experiments with the scenes in Figure 4.22. With grasp reachability, it takes

on the order of 0.1− 0.4s to return the first base placement that has a collision-free inverse

Figure 3.19: Humanoid upper body structure used to extract arm chains.

kinematics solution to grasps the object. With randomized sampling, the time was about

1.2 times slower for the WAM scene, and on average 4-5 times slower for the HRP2 because

its reachability is more constrained.

Each arm consists of a chain of consecutive joints where different arms can share common

joints. The humanoid in this example has 2 torso joints before its kinematic structure

branches into the left and right 7DOF arms (Figure 3.19). Therefore, we can define six

different, semantically meaningful arms: three left arms and three right arms each of 7, 8,

and 9 joints. Unfortunately, analytical inverse kinematics solutions become very difficult

for higher number of joint, and sometimes the torso joints are used for different tasks, so

we cannot just consider the 9 DOF versions of the left and right arms. Choosing the arm

in GoalSampler BasePlacement() takes into account the complexity of the inverse

kinematics solvers for that chain.

Because we’re dealing with a distribution on a 2D plane, it is possible to speed up

the sampling process by projecting the robot base and all collision obstacles on the floor

and compute the Minkowski sum. The Minkowski sum could be multiplied with the grasp

reachability distribution to form a new distribution that further encodes collision obstacles.

Such a method would be beneficial for static industrial environments, but would not speed up

computation for quickly changing environments unless the Minkowski sum is progressively

computed as configurations get rejected.

3.6.2 Two-Stage Planning with Navigation

The simplest type of planning system using base-placement sampling first uses a navigation

planner to assure a path exists to qbase. Although it has been shown that RRTs can also be

used to plan simultaneously with base-placement configuration, it is much simpler to treat

the two processes separately, which is similar to the hand-arm argument presented in Section

Figure 3.20: Having just a static navigation configuration qnavigation is not enough to safely go
into navigation mode, sometimes the target object might collide with the robot.

3.5. Once qbase has been validated and the robot moves to it using the navigation module,

the target object pose is re-confirmed and the grasp planner is executed as shown in Section

3.3.

Algorithm 3.12: GoalSampler NavigationMode()

qrand ← Sample(C)1

SetConfiguration(base, qrand)2

if not IsLinkCollision(GetIndependentLinks(base)) then3

∆T ←
[
I3 Sample(R3)

0 1

]
4

Q← ∅5

for arm ∈ DisjointArms() do6

Tworldgripper ← FK(arm, qnavigation)7

Append(Q, IK(∆T Tworldgripper))8

end9

for {qarm,0, qarm,1, ...} ∈ Q0 ×Q1 × ... do10

q ← MergeConfigurations(qrand,{qarm,0, qarm,1, ...})11

if q ∈ Cfree then12

return q13

end14

Because navigation planners work on the 2D plane by assuming the robot has a 2D

footprint, it is necessary to move all the robot’s limbs in the convex prism defined by the 2D

footprint. If the robot is not grasping anything, this is this step is trivial since a qnavigation
configuration for the arms can be preset. However, if the robot has just grasped an object

and needs to folds its arms to navigate, there is a chance that the object might get into self

Figure 3.21: Robot needs to plan to a configuration such that all its limbs are within the base
navigation footprint.

collision with one of the robot links as shown in Figure 3.20.

In order to sample a navigation mode configuration, we temporarily set up a set of

bounding boxes across the footprint of the robot as shown in Figure 3.21. GoalSam-

pler NavigationMode (Algorithm 3.12 searches for a collision free configuration using

this constraint. In order to guarantee more natural goal poses, we sample symmetric end-

effector positions for each of the arms with the orientations copied from qnavigation. A random

configuration of the robot is first sampled along with a random translation ∆T to move all

the end-effectors in. The original end-effector position of each of the robot arms is extracted

from qnavigation, ∆T is added to its translation, and the inverse kinematics solutions are

stored. Because arms can share joints, we designate a set of arms that share no common

joints with DisjointArms. Once all the arm inverse kinematics solutions have been set,

we take their cross product and check if any configuration lies in Cfree. If all arms have a

collision-free configuration at these end-effector positions, then the sample is used in the

planner. Given the scene in Figure 3.21, it takes approximately 0.1s to sample a valid

configuration and less than a second to get a path.

3.6.3 BiSpace Planning

Although the two-stage mobile manipulation algorithm is really simple to implement and use-

ful when the base placement sampler returns valid solutions that are also reachable most of

the time, there are no guarantees with how feasible a path is until the navigation planner has

validated it. The two-stage process also requires the entire robot be under its navigation foot-

print at all times while moving, which can constrain the space for more complex tasks base

movement than on the floor. We solve these problems by presenting a planning algorithm

called BiSpace [Diankov et al (2008a)] that produces plans to complex high-dimensional

problems by simultaneously exploring both the robot base and arm space {qbase, qarm}. In

(1) (2) (3) (4)

Figure 3.22: BiSpace Planning: A full configuration space tree is grown out from the robot’s
initial configuration (1). Simultaneously, a goal back tree is randomly grown out from a set of goal
space nodes (2). When a new node is created, the configuration tree can choose to follow a goal
space path leading to the goal (3). Following can directly lead to the goal (4); if it does not, then
repeat starting at (1).

the following process we assume the robot base is holonomic; however BiSpace can also be

applied to non-holonomic robots like humanoids; by setting a big base, the resultant goals

produced by BiSpace have a high probability to be reached by the base since a path is pro-

duced. We specifically focus on using BiSpace’s special characteristics to explore the work

and configuration spaces of the environment and robot. Furthermore, we use the reachability

space of the robot for constructing informed heuristics to informatively search through the

high-dimensional spaces involved with arms.

The core idea of the BiSpace algorithm is to grow two search trees in different configu-

ration spaces at the same time. It combines elements of both bidirectional RRTs and the

RRT-JT algorithm [Weghe et al (2007)]. One tree explores the full robot configuration space

starting from the initial configuration and guarantees feasible, executable, and collision-free

trajectories, while the other tree explores a goal space starting from the set of goal config-

urations and acts as an adaptive, well informed heuristic. The BiSpace algorithm proceeds

by extending RRTs in both spaces. Once certain conditions are met, the forward tree at-

tempts to follow the goal space tree path to the goal. Figure 3.22 shows how the robot path

eventually follows the workspace trees of the gripper.

For clarity, we denote a configuration with q and a goal space configuration with b,

usually a goal space configuration is the transformation of the gripper Tgripper. We assume

that there exists a mapping F (·) from the configuration space to the goal space such that

F (q) maps to exactly one goal space configuration. Using this notation, given a goal space

distance metric δb(F (q), b), the goal of planning is to find a path to a configuration q such

that δb(F (q), bgoals) < εgoal.

The flow is summarized by BiSpace (Algorithm 3.13). The forward variable is used

to keep track of which tree to grow. If forward is true, then the configuration space tree

Algorithm 3.13: BiSpace(qinit, bgoals)

/* ρ ∈ [0, 1] - uniform random variable */

forward ← false1

Init(Tf , qinit); Init(Tb, bgoals)2

for iter = 1 to maxIter do3

if forward then4

for fiter = 1 to J do5

q ← Extend(Tf)6

if ρ < FollowProbability(q) then7

bfollow ← NearestNeighbor(Tf , q)8

{success, q′} ← FollowPath(q, bfollow)9

if success then10

return success11

end12

else13

for biter = 1 to K do Extend(Tb)14

forward ← not forward15

end16

return failure17

is extended J times, using the standard RRT extension algorithm Extend [LaValle and

Kuffner (2001)]. Alternatively, if forward is false, then the goal space tree is extended

K times. After each iteration, the value of forward is flipped so that the opposite tree is

extended during the subsequent iteration. After a new node q is added to the configuration

space tree, a follow step is performed from q with probability FollowProbability(q). If

a follow step is performed, then q is extended toward bfollow and its parents.

The differences between BiSpace and BiRRTs become clear in the follow step. In the

BiRRT case, following consists of connecting the two trees along the straight line joining q

and bfollow; this is possible since bfollow is in the same configuration space as q. Because each

branch of the both the forward and backward trees in the BiRRT algorithm represent a valid

collision free path in the configuration space, connecting the two trees immediately implies

a path can be found from the start configuration to the goal configuration. However, that is

not true with the BiSpace algorithm. Since the goal space is different from the configuration

space, the path suggested by the goal space tree must be validated in the configuration space.

Each unique path from a node in the goal space tree to a goal can be used by the forward

tree as a heuristic to informatively bias extension toward the goal. Starting from bfollow,

such a path can be extracted by recursively following its parents. The forward tree can use

the goal space path generated by bfollow as a bias to greedily follow it. If the forward tree

succeeds in reaching the goal, a solution is returned (Figure 3.22). Otherwise, the search

continues as before.

Path following is an integral part of the BiSpace algorithm. It generates a very powerful

bias as to where the configuration tree should grow by using the nodes in the goal space

tree. Each goal space node has already validated a subset of the conditions necessary for the

configuration tree to follow it.

We present a simple, but effective, implementation of path following using a stochastic

gradient approach as shown in FollowPath (Algorithm 3.14). The forward tree slowly

makes progress by randomly sampling configurations that get close to the target goal space

node b. Whenever the forward tree stops making progress, it checks if b has any parents. If

it does, b is set to its parent and the loop repeats. If there are no more parents, the goal

space distance from q to the final parent b.root is checked: if this distance is within the goal

threshold, the function returns success; otherwise it returns false.

FollowPath can require a lot of samples if SampleNeighborhood uniformly samples

the neighborhood of q. This is especially a problem for the high-dimensional configuration

spaces used in manipulation planning. Instead, we sample each of the dimensions one at a

time while leaving the rest fixed. This type of coordinate descent method has been shown

to perform better than regular uniform sampling in optimization and machine learning al-

gorithms [Luo and Tseng (1992)]. Because it is not always beneficial to be greedy due to

many local minima, we introduce γinflation to relax the distance metric we are minimizing.

The inflation has a similar effect to inflating the goal heuristic in A*; γinflation = 1.4 is used

for all results.

We use inverse kinematics solution validation as an optional addition to FollowPath.

After the forward tree terminates at a configuration q, an IK solution can be checked for

a subset of the DOFs of the configuration space. If there exists a solution, we can run a

bidirectional RRT using the subset of DOFs used for IK to find a path from q to the new

goal configuration. For example, if a 7 DOF arm is mounted on a mobile platform, its full

configuration space becomes 10 dimensional, however, the arm’s IK equations will still remain

7 dimensional. Having such a check greatly reduces planning times and is not prohibitively

expensive if the IK equations are in closed form. While some algorithms ignore IK solutions,

BiSpace can naturally use inverse kinematics to its advantage. Empirical results suggest

that BiSpace can experience a 40% decrease in planning time when exploiting available IK

solutions.

Algorithm 3.14: FollowPath(q, b)

/* ρ ∈ [0, 1] - uniform random variable */

success ← false1

for iter = 1 to maxFollowIter do2

best← null3

bestdist← γinflation ∗ δb(F (q), b)4

for i = 1 to N do5

q′ ← SampleNeighborhood(q)6

if δb(F (q′), b) < bestdist then7

bestdist← δb(F (q′), b)8

best← q′9

end10

if best is null then11

if b.parent is null then12

break13

b← b.parent14

else15

q ← Tf .add(q, best)16

end17

success← δb(F(q), b.root) < εgoal18

/* Optional IK test */

if not success and (q’ ← IKSolution(q, Tb.goals)) then19

{success, q} ← BiRRT(Tf , q, q’)20

return {success, q}21

Since BiSpace is a randomized algorithm, it cannot detect in a finite amount of time

that a given collision-free grasp is impossible to reach. Therefore, seeding BiSpace with only

one grasp at a time is dangerous as the planner might never find a solution. Instead, it is

favorable to seed the BiSpace planner from the beginning with as many feasible grasps as

possible using the precomputed grasp tables, increasing the likelihood that at least one of

the grasps can be reached. Since the Extend operation is not affected by the number of

trees being grown, incorporating multiple goals in the goal space does not affect efficiency

[Okada et al (2004)].

Figure 3.23: Comparison of how the distance metric can affect the exploration of the arm. The top
image shows the search trees (red/black) generated when the distance metric and follow probability
is weighted according to Equation 3.14. The bottom image shows the trees when the distance metric
stays uniform across the space; note how it repeatedly explores areas. The goal space trees are
colored in blue.

Reachability Heuristic

It is clear that successfully moving to a specific grasp requires the robot move its base so

that its reachability volume coincides with the particular grasp. Given a target grasp g, we

would like to compute a probability distribution Pg(p) of completing the grasp as a function

of the base placement p. In Section 4.4 we introduce a reachability map that can retrieve a

the set of all possible base placements for a given end-effector transformation. This set can

be treated as a Mixture of Gaussians and probably can be computed directly.

Workspace Exploration Heuristic

As humans, we employ different navigation strategies based on our distance to a goal object.

When a person is far away from an object of interest, they care primarily about moving their

body in a direction that will get them close to the object. When they are close, they usually

plant their feet and use their arms to make contact with the object. We can achieve the

same behavior in BiSpace by modifying the configuration space distance metric such that

(3.14) δ(q) = |ω(q)qarm|+ |qbase|

where ω weights the important of base exploration vs arm exploration. When the robot

base is far away from the goal, the weight ω should be small so that the robot takes bigger

steps on average. This suggests a simple monotonic function for ω:

(3.15) ω(q) ∝ exp

{
−mini |goali −BasePosition(q)|2

2σ2

}
where σ is proportional to the length of the arm. Figure 3.23 demonstrates the behavior

of BiSpace when using the modified distance metric, and empirical results show that planning

times reduce by 20% when this metric is used.

Follow Probability

The farther the robot is away from the goal, the less chance it will have of reaching it through

FollowPath. The reason is because FollowPath itself is not exploration-centric like

RRTs; it is meant for greedily approaching the goal when the body and hand of the robot

are relatively unobstructed by complex environment obstacles. We present two metrics to

compute the follow probability: the kinematic reachability explained in Section 4.3 and the

distance falloff ω(q) given by Equation 3.15. Both metrics monotonically decrease as the

robot gets farther from the goal. The kinematic reachability is more informed since it is a

6D table reflecting the real arm kinematics while ω(q) is much easier to compute and often

very effective as shown in Figure 3.23. The correct follow probability can have a dramatic

effect on planning times, sometimes reducing it by 60-70%.

BiSpace Experiments

We compare BiSpace with RRT-JT [Weghe et al (2007)] and the two-stage navigation ap-

proach described in Section 3.6.2. A mobile base adds three degrees of freedom to the

configuration. Randomized algorithms are known to have a long convergence tail, we termi-

nate the search after 10-20 seconds and restart. This termination strategy produces much

faster average times for all algorithms. Note however that every termination counts against

the final planning time for that particular algorithm. Termination times were uniquely set

for each algorithm in order to give it the fastest possible average time. The average planning

time is recorded in Table 3.3 where each algorithm is run on each scene 16-30 times. Other

parameters like RRT step size and goal thresholds were kept the same for all algorithms. To

demonstrate the generality of these algorithms, we evaluated scenes using both the HRP2

humanoid and a WAM arm loaded on a segway (Figure 3.24).

Since BiRRTs operate only in the full configuration space it would be unfair if they were

seeded with the final solutions without any penalties. In order to make comparison fair, we

Figure 3.24: Scenes used to compare BiSpace, RRT-JT, and BiRRTs.

BiSpace RRT-JT BiRRTs

HRP2 table (11 DOF, easy) 33 53 68
HRP2 table (11 DOF, harder) 45 528 78
HRP2 random (11 DOF) 37 170 40
WAM/segway (10 DOF) 17.25 25.2 22.93
WAM (7 DOF) 0.44 11 0.37

Table 3.3: Average planning time in seconds for each scene for the scenes in Figure 3.24.

randomly sample full configuration solutions for a given target grasp until a collision-free,

feasible configuration is generated. The recorded time is added to the final planning time.

The sampling takes somewhere from 2-9 seconds for HRP2 and less than 1 second for the

WAM on segway.

When planning for the HRP2 robot, we make the assumption that its base can freely

travel on the floor and the legs do not need to move. Once BiSpace has planned a global

trajectory, later footstep planners can add the necessary leg movements and dynamics to

make the HRP2 move. In order to allow for leg space, an invisible cylinder is super-imposed

over the lower body. Thus the planning space for HRP2 is reduced to 11 degrees-of-freedom:

3 for the base, 1 for the waist, and 7 for the arm. As can be seen from Figure 4.19, most of

the hand reachability lies shoulder height to the side of the robot. This makes it hard for

the robot to manipulate objects in front of it at waist height, which is why all the planners

require significant planning time.

One of the hardest scenes for BiSpace is when the target object is on a table and HRP2

has to circle the table to get to it (Figure 3.25). Here, the goal space tree produces many

false paths directly over the table, which the HRP2 cannot follow to the end. This process

Figure 3.25: Hard scene for BiSpace. The forward space tree (red) does not explore the space
since it is falsely led over the table by the goal space tree (blue).

goes on until the rest of the configuration space tree finally explores the space on the other

side of the table. This limitation is characteristic of bi-directional RRTs also and provides a

good example of why exploration is always a crucial ingredient in sampling-based planners.

We tested two main scenes for the WAM: a living room scenario where the WAM is

mobile, and a scenario where the WAM has to put cups in a dishwasher. The WAM arm

has 7 degrees of freedom and very high reachability making planning very fast. BiSpace

compares relatively well with BiRRTs, however it is a little slower due to the extra overhead

in the FollowPath function.

The BiSpace algorithm can efficiently produce solutions to complex path planning prob-

lems involving a goal space that is different from the configuration space. We presented

several heuristics that exploit the kinematic structure of the robots to speed up planning.

3.7 Discussion

We have worked to find a reasonable and sufficient set of planning algorithms that can cover

the entire spectrum of manipulation planning problems proposed in Chapter 2. We have

shown their application in a number of different tasks with a number of different robot plat-

forms. Most importantly, all information that the planning algorithms use can be computed

by a geometric analysis of the environment. In fact, we showed how the planning knowledge-

base plays a key role in instantiating samplers and functions used throughout planning. It

is very difficult to measure the time-complexities of sampling-based planners because of the

high dependency on the environment and the sampling distribution. Furthermore, the RRT

family of planners are known to have long tails for planning time distributions, making it

difficult to prove theoretical time bounds for them. Instead, we have presented timing ex-

periments of thousands of simulations for environments that are representative of home and

industrial settings.

All the planning theory culminated in a generalized configuration sampler that can ef-

ficiently reason what grasps to use in an environment and can sample informative base

placements. Along with covering the basic grasp planner, we also covered other common

planning situations like planning to open a gripper or planning to a navigation mode when

using in conjunction with navigation planners. Planning with a mobile base requires not

only efficient searching for the paths as shown in the BiSpace algorithm, but also careful

selection of the goals. For example, choosing a grasp requires simulating the grasp in the

environment to assure only the targeted object contacts with the gripper. Quickly choosing

a base placement requires computation of the arm reachability along with simultaneously all

grasp sets for all target objects. All these planning algorithms have been deployed on real

robots systems and the computation times written at the end of each respective sub-section

have been verified over many trials.

Chapter 4

Manipulation Planning

Knowledge-base

The information a task relies on can be divided into information defining the task and

independent of the current state of the environment and information obtained at run-time

like obstacles and target positions that the robot has no way of pre-computing beforehand.

In this chapter we analyze the relational structure of information pertaining to the robot

and task specifications and develop several offline algorithms that can pre-compute this

information into a form that makes online retrieval as quick as possible. We organize all this

information into a planning knowledge-base where all knowledge-base models are specifically

optimized to make the manipulation processes discussed in Chapters 3 and 5 as quick and

accurate as possible. We achieve this by identifying basic-building blocks and explicitly

encoding their inter-dependencies. The goal is to quickly compute answers to questions about

the inter- and intra-relationships of these blocks by approximating the acquired models and

caching the information for quick retrieval.

Ideally, the planning knowledge-base should give a sense of how the robot operates within

its workspace and how the task definition can affect the choices the robot has to make. Most

of the building blocks are based on the geometry of planning problems where precisely de-

fined computations do not have a trivial solution to their inverse computation, or require

analyzing the behavior of the computation across the entire input space. Using the main

components from Figure 2.4, we can precisely define their relationships to produce the plan-

ning knowledge-base graph of Figure 4.1. This shows a computational dependency graph of

the components commonly used to solve manipulation tasks. At the left we start with the

robot and task specifications. Along with the kinematics and geometry, each robot has a

labeled set of chains that serve as the arm and gripper groups. Each gripper is attached to

75

Figure 4.1: Computational dependency graph of all the components extracted from the relational
graph in Figure 2.4.

an arm and has a specific 3D direction of approach. On the other hand, the target object

just contains the CAD model and a set of training images that allow vision algorithms to

create an object-specific pose recognition program for the target object.

We begin with a motivation for all the components in Figure 4.1. Analytic inverse

kinematics equations for each arm are required for fast planning and many of the geometric

analyses following. In Section 4.1, we introduced an algorithmic approach named ikfast for

finding the most robust closed-form solutions. Inverse kinematics allows exact computation of

the arm reachability space that is used for many planning heuristics (Section 4.3). Inverting

the reachability and projecting it down to 2D planar movements allows us to start computing

base distributions (Section 4.4). From the target object perspective, we generate all the

grasps that handle the object according to the task specification. In Section 4.2 we cover

two algorithms for computing grasps: force closure grasps and caging grasps. We show the

usefulness of these grasps for a wide range of tasks. For each pose recognition program trained

from the object specification, we gather a map of all the camera locations that can robustly

detect the object (Section 4.7). This combined with the preshapes of the grasps allows

us to compute a sensor visibility map for the robot. By combining grasp sets and inverse

reachability, we can start reasoning about how the robot base gets distributed depending on

the location of the target object; we call this map grasp reachability and cover its generation

and usage in Section 4.5. We also discuss the advantages of using convex decompositions for

the collision geometry of a robot (Section 4.6). Convex decompositions give us much simpler

geometries to work with allowing us to pad the robot and to approximate the volume of

each of its links. Once we have an estimate of the volume a link takes, we can compute

swept volumes for each of the joints and from there compute much better configuration

space distance metrics (Section 4.6.3).

The knowledge-base should be optimized for accurate modeling of the underlying geome-

try and fast usage times during online planning. Because every model has several parameters,

we provide experimental data to help provide an intuition for the discretization factors and

thresholds involved with each of the models. However, it should be noted that we are not

concerned with the computation time of the generation process for each component. We

assume that such databases can be computed offline in a cluster of computers and then

stored on a server for quick download and usage. In fact when we cover the OpenRAVE

robotics environment responsible for the experiments in this thesis, we cover the computa-

tion of unique hashes for the robot and target bodies so that the data can be indexed more

consistently (Section A.1.5).

4.1 Inverse Kinematics

The relationships between the workspace movement of the robot sensors and grippers with

the configuration of the robot is expressed through kinematics. For planning algorithms and

other workspace analysis, the inverse problem of going from desired frames of reference on

the robot to joint angles is equally important. In this thesis we identify several problems

in inverse kinematics and provide an automated analysis and solutions for them. The most

popular inverse kinematics problem is to compute all the joint angles qarm that move a

link to a specified translation and orientation T =
[
R t

]
. Pure mathematical attempts to

analytically solve the general problem could not handle singularities and resulting programs

are not always optimal [Low and Dubey (1987)]. Therefore, many flavors of numerical

methods have been developed involving numerical gradient descent using δT
δq

. In fact, most

of the literature revolving around generalized inverse kinematics solutions revolves around

numerical methods disregarding the analytical problem as too difficult to solve. Although

general analytical solutions to the problem have been proposed [Manocha and Zhu (1994)],

the methods can become numerically unstable due to the heavy mathematical machinery

like eigendecomposition.

In this section, we look at the automatic generation of a minimal, numerically stable

analytical inverse kinematics solver using an algorithmic search-based approach. We note

that it is difficult to prove existence of a solution with algorithmic approaches; however, we

will show that by sacrificing a little generality, the presented analysis can produce much more

stable closed-form solutions to most of the common robot arms available today. Closed-form

solutions are vital for motion planning for two reasons:

1. Numerical inverse kinematics solvers will always be much slower than closed form solu-

tions. But because planners require being able to process thousands of configurations

per second, it is critical to have fast IK solvers. The closed-form code generated by

our proposed method can produce solutions on the order of 6 microseconds. As a

comparison, most numerical solutions are on the order of 10 milliseconds and have to

worry about convergence.

2. The null space of the solution set can be explored because all solutions are computed.

This gives planning algorithms more freedom to move the robot around.

In this thesis, we develop the ikfast algorithm to perform this generation process. As a

program, ikfast generates a C++ file that directly compiles into a solver. Although inverse

kinematics can become arbitrarily complex with closed-chains, we only consider kinematic

chains employing hinge and prismatic one degree of freedom joints.

Figure 4.2: An outline of the parameterizations ikfast can solve along with how the equations
are decomposed.

We identify several inverse kinematics parameterizations important for robotics:

• Transformation IK (6DOF Translation+Rotation) - The most common form of

inverse kinematics used to get a desired workspace movement to a set of configurations.

This IK is vital for quick grasp planning where each grasp specifies an end effector

transformation. Furthermore, this IK can be used to orient sensors to a desired location

for securing visibility.

• Translation IK (3DOF) - Used for achieving a 3D position without worrying about

orientation. Many problems in robotics like pushing buttons and other objects involve

only a point contact.

• Rotation IK (3DOF) - Used for achieving a particular orientation without con-

cern of the translation component. There are visibility problems in computer vision

where a part must be observed from all orientations in order to build a good ap-

pearance/perception model of it. Such tasks do not pose strict constraints on sensor

position.

• Look-at Ray (4DOF) - This is another parameterization used for camera visibility

for computing the pose of objects in the world. A camera can be thought of as a

frustum which has a specific position and direction. When we need to move the camera

sensor to observe an object, we can parameterize the problem as placing the camera

anywhere along a ray pointing to the object. Although the closer objects provide better

measurements, there are no strict constraints on distance to object or roll around the

ray axis.

Figure 4.2 shows an outline of the four parameterizations and general approach to solving

each. In the following sections we discuss the ikfast implementation in detail and evaluate

its performance at the end.

4.1.1 Basic Formulation of Inverse Kinematics

The fundamental chain of transformations that compute the end effector link frame is defined

by:

(4.1) Tee = T0J0T1J1T2J2...Tn =

r00 r01 r02 px
r10 r11 r12 py
r20 r21 r22 pz
0 0 0 1

where Ti is a constant affine transformation, and Ji is a transformation depending on

joint value ji, which can be a rotation around an arbitrary axis vi:

(4.2) Ji(ji) = I4x4 + sin ji

0 −vi,z vi,y 0

vi,z 0 −vi,x 0

−vi,y vi,x 0 0

0 0 0 0

+ (1− cos ji)

0 −vi,z vi,y 0

vi,z 0 −vi,x 0

−vi,y vi,x 0 0

0 0 0 0

2

or a translation along an axis:

(4.3) Ji(ji) =

[
I3x3 jivi

0 1

]

We derive all constraints used for solving the IK by changing the frame of reference of

Equation 4.1:

T−1
0 TeeT

−1
n = J0T1J1T2J2...Jn−1 (i = 0)(4.4)

J−1
0 T−1

0 TeeT
−1
n = T1J1T2J2T3...Jn−1 (i = 1)

T−1
1 J−1

0 T−1
0 TeeT

−1
n = J1T2J2T3J3...Jn−1 (i = 2)

...

T−1
n−1J

−1
n−2...T

−1
0 TeeT

−1
n = Jn−1 (i = 2n− 2)

For each of the equations above, we define Fee,i =

[
Ree,i tee,i

0 1

]
and Fi =

[
Ri ti
0 1

]
such

that Fee,i = Fi. In order to simplify the equations that will be covered below for several real

robots, we let cd = cos jd, and sd = sin jd.

In the past, there have been four different approaches to solving the IK problem. The

first is an algebraic approach where the problem resolves into a high-degree univariate poly-

nomial. Such an approach can easily become ill-conditioned when searching for roots. A

second approach is based on analyzing the structure of solutions sets of polynomial systems

[Wampler and Morgan (1991)], but suffers from numerical ill-conditioning. The third ap-

proach is based on linear algebra where the problem can be formulated as eigendecomposition

[Raghavan and B.Roth (1990); Manocha and Zhu (1994)]. Although the linear algebra ap-

proach is the fastest from all the proposed methods, it still suffers from numerical problems

due to eigendecomposition of 48x48 matrices. Our method differs in the past approaches in

that we emphasize numerical stability over solution generality.

The constraints in Equation 4.5 correspond to equations of the form:

(4.5)
∑
i

ai
∏
j

c
pi,j
j s

qi,j
j j

ri,j
i = 0

where pi,j + qi,j + ri,j <= 1. Combining with the c2
j +s1

j −1 = 0 trigonometric constraints

for all revolute joints, we have a system of up to 2n unknown variables. The challenge to

building a stable IK solver is to exploit as much structure of the problem as possible by first

starting with all variables that can be solved with low-degree polynomials. In this paper,

we cover the kinematic complexity up to solving intersections of conics. The problem can

become more complex with pairs of joint variables being coupled, in which case intersections

of quadrics is necessary [Dupont et al (2007)]. Although extremely rare in today’s commercial

robots, if more joint coupling is present, we fall back to a general solver like [Manocha and

Zhu (1994)].

4.1.2 Evaluating Equation Complexity

The first challenge is using the forward kinematics equations to set up all possible constraints

on the variables. The solver searchers for solutions prioritizing the simplest and most unam-

biguous solutions first. A variable can be solved in multiple different ways, each way having

its own set of degenerate cases. We consider two levels of complexity:

• Solution complexity deals with the number of discrete solutions a joint value can

take. Introducing square roots and inverse sin/cos methods introduces two possible

solutions. Sometimes this is unavoidable because the underlying kinematics dictate

several possible solutions, but most of the time one of the solutions can be inconsistent

with the rest of the kinematics.

• Numerical complexity deals with the number of operations required to compute

a specific equation. Equations with the same solution complexity might not have

different numerical complexities. Numerical complexity also penalizes divides since a

potential degenerate case might occur.

When deciding which variable to solve for, the solution complexity is evaluated for

each variable and a set of solutions having the same minimum complexity are chosen. Inside

each of these equations, the one with the minimum numerical complexity is chosen.

Given the current set of known variables that have been solved, we search for equations

with the following priority:

• cos jd and sin jd can be solved from two linearly independent equations polynomial in

cos jd and sin jd. Polynomials of degrees more than 1 are penalized.

• If no linearly independent equations exist, search for equations of the form a cos jd +

b sin jd = c. This will allow us to solve for the correct angle within π radians.

• Finally resolve to equations of the form (cos jd)
2 = a, which can have up to four

answers:

(4.6) jd = {cos−1
√
a,− cos−1

√
a, cos−1−

√
a,− cos−1−

√
a}

• Any solution that can be solved in closed-form.

If there are degenerate cases like divides by zero, an explicit branch occurs in the gener-

ated code that sets all the instances of the condition to zero and re-analyzes the equations.

There are two categories of divides by zero. One where the condition can be directly eval-

uated to a value of a joint variable like cos jd = 0; the other cannot be solved so easy or is

not related to joint solutions like p2
x + p2

y. The former allows us to explicitly create branches

for jd = π
2

and jd = −π
2
, which we will show below is necessary to get correct solutions. The

latter divide by zero category makes it more difficult to propagate changes in compile time,

so is penalized more.

For example, when presented with the following set of equations:

cos j0 = a0(4.7)

a1 ∗ sin j1 + a2 ∗ cos j1 = a3(4.8)

a4 ∗ sin j1 + a5 ∗ sin j1 = a6(4.9)

solving for j0 yields two solutions:

(4.10) {cos−1 j0,− cos−1 j0}.

If the equations for j1 are linearly independent, solving for j1 yields:

sj1 =
a3a5 − a2a4

a1a5 − a2a4

(4.11)

cj1 =
a1a4 − a3a4

a1a5 − a2a4

(4.12)

j1 = atan2(sj1, cj1)(4.13)

There are several advantages to the solution of j1 when compared with j0:

• atan2 function is extremely robust to zeros and infinities and will return a solution in

the full circle [0, 2π]. It is available on all math libraries.

• The domain of cos−1 and sin−1 is [−1, 1] making the functions unstable due to numerical

imprecision. There are also two solutions, one of which might not be consistent with

the robot kinematics.

Therefore solutions like Equation 4.11 should be prioritized over Equation 4.10; in fact,

equations in the form of sin−1 x, cos−1 x, and
√
x should be only used as a last resort when

there is nothing else available.

In order to apply a solution in a real working IK solver, there needs to be guarantees that

the solution will always produce the correct answer. Developing an IK solver that works 100%

of the time is difficult because many degenerate cases arise. For example, it is a common

mistake for researchers to apply Equation 4.11 as is without considering the degenerate case

a1a5− a2a4 = 0 when solving for sj1 and cj1. This divide by zero is a serious problem and

completely changes the priority equations have to be considered. As we will see in examples

below, this can actually affect what variable is solved first. Unfortunately, we cannot just

cancel out the denominators in the hope of eliminating the zero because

(4.14) atan2(
b0

c
,
b1

c
) 6= atan2(b0, b1).

The sign of c can affect the quadrant the angle is returned in, thus potentially returning

an angle that is π radians from the correct result. Therefore, the correct approach is to first

evaluate the potential divide by zero conditions and branch to a different set of solutions

where the divide by zero is delayed and other variables are prioritized; eventually a different

a solution will be found for the original variable.

In the following sections we will be using the Kuka KR5 R850 industrial manipulator

(Figure 4.4 and the PR2 personal service robot 4.3 for explaining inverse kinematics gener-

ation. The PR2 service robot has seven joints, which adds a redundancy to the kinematics.

This issue will be discussed in further detail below, but for now we assume that the value of

the first joint j0 is set by the user.

4.1.3 Solving 3D Translation IK

There are two types of equations setup for 3D translation using Equation 4.4:

tee,i − ti = 0(4.15)

‖tee,i‖2 − ‖ti‖2 = 0(4.16)

We show how to solve a subset of the joints of the PR2 for translation. We treat the wrist

position where the last three joints intersect as the translation target. The PR2 kinematics

equations are

t0 =
(

0.1c0+0.4c0c1+0.321c0c1c3−0.321s0s2s3−0.321c0c2s1s3
0.1s0+0.4c1s0+0.321c0s2s3+0.321c1c3s0−0.321c2s0s1s3

−0.4s1−0.321c3s1−0.321c1c2s3

)
, tee,0 =

(
px
py
pz

)
t1 =

(
0.1+0.4c1+0.321c1c3−0.321c2s1s3

0.321s2s3
−0.4s1−0.321c3s1−0.321c1c2s3

)
, tee,1 =

(pxc0+pys0
pyc0−pxs0

pz

)
t4 =

(
0.4+0.321c3
0.321s2s3
−0.321c2s3

)
, tee,4 =

(
−0.1c1−pzs1+pxc0c1+pyc1s0

pyc0−pxs0
−0.1s1+pzc1+pxc0s1+pys0s1

)
t6 =

(
0.321c3

0
−0.321s3

)
, tee,6 =

(
−0.4−0.1c1−pzs1+pxc0c1+pyc1s0

−0.1s1s2+pyc0c2+pzc1s2−pxc2s0+pxc0s1s2+pys0s1s2
−0.1c2s1+pxs0s2+pzc1c2−pyc0s2+pxc0c2s1+pyc2s0s1

)

Figure 4.3: The labeled joints (black) of the PR2 robot’s right arm.

We treat j0 as the free parameter, so c0 and s0 are known. The first solution found is for

j3 where we get the constraint:

‖tee,4‖2−‖t4‖2=−0.066959−0.08c1+0.2pxc0+0.2pys0−0.8pzs1+0.8pxc0c1+0.8pyc1s0−px2−py2−pz2=0

⇒ c3=−0.9853621495−0.7788161994c0px−0.7788161994pys0+3.894080997(px2+py2+pz2)

This equation has two solutions, and no other constraint on j3 can be computed, so we

add both as possible solutions. Geometrically thinking, j3 is the elbow of the robot, and

usually there are two solution when computing the length of the base to the arm tip.

Treating j3 as a known value, the next solvable variable is j2:

tee,1−t1=pxs0−pyc0+0.321s2s3=0

⇒ s2=−3.115264797
pxs0−c0py

s3

There are no other constraints that can be formed, so we compute two solutions for j2

from sin j2. Geometrically this makes sense because two angles can achieve the same direction

in two different ways; once one is set, the other angle is uniquely determined. However, you’ll

note that there is a potential divide by zero problem with sin j3. Because this is the only

possible solution, we have to compute a new set of constraints given j3 ∈ 0, π. For example,

we get the following new equations when setting j3 = 0:

Figure 4.4: The labeled joints (black) of the Kuka KR5 R850 industrial robot.

t′0 =
(

0.1c0+0.721c0c1
0.1s0+0.721c1s0
−0.721s1

)
, t′ee,0 =

(
px
py
pz

)
t′1 =

(
0.1+0.721c1

0
−0.721s1

)
, t′ee,1 =

(pxc0+pys0
pyc0−1pxs0

pz

)
t′4 =

(
0.721

0
0

)
, t′ee,4 =

(
−0.1c1−1pzs1+pxc0c1+pyc1s0

pyc0−1pxs0
−0.1s1+pzc1+pxc0s1+pys0s1

)
The solutions to the remaining variables become clear with

(4.17) j′1=atan2(−1.386962552pz ,−0.1386962552+1.386962552c0px+1.386962552pys0)

Going back to the original non-zero branch, with j2 and j3 computed, the final solution

to j1 becomes

(4.18) j1=atan2

„
pz(0.1−c0px−pys0)−0.321c2s3(0.4+0.321c3)

−(0.4+0.321c3)(0.1−c0px−pys0)+0.321c2pzs3
,

(0.4+0.321c3)2−pz2

−(0.4+0.321c3)(0.1−c0px−pys0)+0.321c2pzs3

«

which is unique. Therefore the translation component of the PR2 can have up to 4 unique

solutions.

We also provide the equations to the Kuka manipulator in order to show the similarities

of the analyses. The first thing worth nothing is that the joint axes for j1 and j2 are aligned,

which hints that j0 can be decoupled from the computations. The kinematics equations are:

t0 =
(

0.075c0+0.365c0s1+0.405c0c1c2+0.09c0c1s2+0.09c0c2s1−0.405c0s1s2
−0.075s0−0.365s0s1+0.405s0s1s2−0.405c1c2s0−0.09c1s0s2−0.09c2s0s1

0.335+0.365c1+0.09c1c2−0.405c1s2−0.405c2s1−0.09s1s2

)
, tee,0 =

(
px
py
pz

)
t1 =

(
0.075+0.365s1+0.405c1c2+0.09c1s2+0.09c2s1−0.405s1s2

0
0.335+0.365c1+0.09c1c2−0.405c1s2−0.405c2s1−0.09s1s2

)
, tee,1 =

(
pxc0−1pys0
pxs0+pyc0

pz

)
t4 =

(
0.405c2+0.09s2

0
0.09c2−0.405s2

)
, t4,ee =

(
0.335s1−0.075c1−1pzs1+pxc0c1−1pyc1s0

pxs0+pyc0
−0.365−0.335c1−0.075s1+pzc1+pxc0s1−1pys0s1

)
We get two solutions with j0:

(4.19) j0 = {−atan2(−py,−px) , π − atan2(−py,−px)}

This allows us to solve for j2:

a=0.6190937723+2.212228413pz+0.4952750178c0px−0.4952750178pys0−3.301833452(px2+py2+pz2)

⇒j2={−2.92292370771547−sin−1 a , 0.218668945874327+sin−1 a}

Finally, we solve for j1:

b=0.075+pys0−c0px

j1=atan2
“
b(0.365+0.09c2−0.405s2)−(0.335−pz)(0.405c2+0.09s2)

−(0.335−pz)2−b2
,
(0.335−pz)(0.365+0.09c2−0.405s2)+(0.405c2+0.09s2)b

−(0.335−pz)2−b2

”

Conic Sections

The constraints in Equation 4.15 might not be so forgiving as to always guarantee there is

one joint variable singled out. It is very common for manipulators to have two joint variables

coupled which give rise to the following equations:

(4.20) Aj,0 +Aj,1c0 +Aj,2s0 +Aj,3c1 +Aj,4s1 +Aj,5c0c1 +Aj,6c0s1 +Aj,7s0c1 +Aj,8s0s1 = 0

where Aj,k is a set of constants of the jth constraint computed from all frames of reference

of Equation 4.15. Treating c0, s0, c1, and s1 as independent unknown variables, it is very

difficult to find a closed form solution of this family of equations. However, by taking

advantage of the property that c2
k + s2

k = 1, we can solve Equation 4.20. First we treat the

set of equations as linear with respect to the pairwise variables c0c1, c0s1, s0c1, and s0s1,

and solve for them using basic linear algebra techniques. This allows us to single out the

pairwise variables like this:

c0c1 = B0,0c0 +B0,1s0 +B0,2c1 +B0,3s1 +B0,4(4.21)

c0s1 = B1,0c0 +B1,1s0 +B1,2c1 +B1,3s1 +B1,4(4.22)

s0c1 = B2,0c0 +B2,1s0 +B2,2c1 +B2,3s1 +B2,4(4.23)

s0s1 = B3,0c0 +B3,1s0 +B3,2c1 +B3,3s1 +B3,4(4.24)

0 = B4,0c0 +B4,1s0 +B4,2c1 +B4,3s1 +B4,4(4.25)

Although there are four equations here, there is two underlying degrees of freedom,

meaning that two equations can be formulated as a combination of the other two. In order

to remove the coupled variables from the left side, we pick two equations, square both sides,

and add them together. For example, (Equation 4.21)2 + (Equation 4.22)2 yields c2
0 for the

left side. Applying the transformation for all valid combinations gives:

c2
0 = D0,0c

2
0 +D0,1c0s0 +D0,2c0 +D0,3s0 +D0,4(4.26)

s2
0 = D1,0c

2
0 +D1,1c0s0 +D1,2c0 +D1,3s0 +D1,4

c2
1 = D2,0c

2
1 +D2,1c1s1 +D2,2c1 +D2,3s1 +D2,4

s2
1 = D3,0c

2
1 +D3,1c1s1 +D3,2c1 +D3,3s1 +D3,4

where Dj,k is constant for k < 4 and Dj,4 is the remainder. If one of Dj,4 is a constant

value, we can solve for cos and sin of a single variable by formulating the problem as the

intersection of two conic sections setting x = cos jk and y = sin jk:

E0x
2 + E1xy + E2y

2 + E3x+ E4y + E5 = 0⇒

xy
1

T E0
E1

2
E3

2
E1

2
E2

E4

2
E3

2
E4

2
E5

 xy
1

⇒ xTC0x = 0

x2 + y2 − 1 = 0⇒

xy
1

T 1 0 0

0 1 0

0 0 −1

 xy
1

⇒ xTC1x = 0(4.27)

We first note that any solution x that satisfies both C0 and C1, will also satisfy a linear

combination of them:

(4.28) xT (C0 + λC1)x = 0

The goal is to produce a third conic C2 = C0 +λC1 such that C2 is degenerate. A degen-

erate conic has solutions that are: a point, a line, or two intersecting lines. Such geometric

primitives are much easier to work with and we can immediately find the intersection of

them with the unit circle represented by C1. C2 s degenerate when its determinant is 0.

This amounts to solving a cubic equation in λ:

|C0 + λC1| = 0

⇒ λ3 + F2λ
2 + F1λ+ F0 = 0

F2 = E0 + E2 − E5

F1 = E0E2 − E0E5 − E2E5 +
E2

3 + E2
4 − E2

1

4

F0 = −E0E2E5 +
E0E4

2 − E1E3E4 + E2E3
2 + E5E1

2

4
.

which can be analytically solved using methods in [Weisstein (1999-present)].

For every real solution to λ, we compute the degenerate conic C2 and find its null space

NS(C2), which we can use to compute the line:

(4.29) ∀v ∈ NS(C2),
[
x y 1

]
· v = G0x+G1y +G2 = 0.

Intersecting with the unit circle gives us the following quadratic equation:

(4.30) (G1y +G2)2 +G2
0y

2 = G2
0

As an example of an application to these equations, we take the PR2 kinematics, but

this time choose j2 to be the free parameter. This gives us many coupled equations, with

the following being the simplest:

0.321s2s3 = c0py − pxs0

0.2568c3 = −0.253041− 0.2c0px − 0.2pys0 + px
2 + py

2 + pz
2

Squaring all sides and adding the two equations gives a conic equation in c0 and s0:

E0c
2
0 + E1c0s0 + E3c0 + E4s0 + E5 = 0

E0 = 9.704874759(
px

2

s2
2
− py

2

s2
2
) + 0.6065546724(py

2 − px2)

E1 = −1.213109345pxpy + 19.40974952
pxpy
s2

2

E2 = 0

E3 = −1.534832009px + 6.065546724(pxpy
2 + pxpz

2 + px
3)

E4 = −1.534832009py + 6.065546724(pypx
2 + pypz

2 + py
3)

E5=0.02906143424−9.704874759 px
2

s2
2 +7.067605371py2+7.674160043(px2+pz2)−15.16386681(px4+py4+pz4+2px2py2+2px2pz2+2py2pz2)

Once we solve for the first joint variable, we can continue searching for the others starting

again at Equation 4.15. The divide by sin j2 is clear in these equations, so we specifically

test the IK when j2 ∈ {0, π}. For example, setting j2 = 0 and re-solving allows us to solve

for j0 immediately:

(4.31) j0 ∈ {−atan2(−py, px), π − atan2(−py, px)}

4.1.4 Solving 3D Rotation IK

There are two types of equations setup for 3D rotation:

Ree,i = Ri(4.32)

Ree,i(j1)

Ree,i(j2)
=
Ri(j1)

Ri(j2)
(4.33)

where j1 and j2 index one of the 9 elements in the rotation matrix. Unlike translation,

the rotation solution can be solved without changing the frame of reference. However, there

much more frequent degenerate cases and divides by zero, which makes the final solutions

complex. A geometric analysis of the problem will show that three angles can provide for

at least 2 unique solutions for every rotation matrix. If there is ever more than 2 unique

solutions, then it is because two joint axes have aligned, and an infinite amount of unique

solutions can be computed.

Here we use the last three axes of the PR2 and Kuka robots to show how 3D rotations

are solved. The PR2 rotation kinematics are:

(4.34) R8 =

 c5 s5s6 c6s5

s4s5 c4c6 − c5s4s6 −c4s6 − c5c6s4

−c4s5 c6s4 + c4c5s6 −s4s6 + c4c5c6

 , Ree,8 =

r00 r01 r02

r10 r11 r12

r20 r21 r22

The most apparent equation here is c5 = r00 because it almost allows computation of

j5. In fact, if r00 ∈ {±1}, we can deduce that s5 = 0, so it is possible to compute j5

directly. Because one of our constraints from Equation 4.32 involves dividing by elements of

R, one very dangerous possibility is that any one of c4, s4, c5, s5, c6,or s6 can appear in the

denominator; and if zero, will make the equation degenerate. Therefore, a the rule of thumb

when generating the equations it take advantage of all computed constraints on the joint

variables. From the above constraint, if r00 ∈ {±1}, then we know for a fact that s5 = 0

and can solve for j5, therefore we create an extra branch in the generated code setting j5 to

0 and π. This gives the following new matrix evaluated at j5 = 0:

(4.35) R′8 =

1 0 0

0 c4c6 − s4s6 −c4s6 − c6s4

0 c4s6 + c6s4 c4c6 − s4s6

 =

1 0 0

0 cos(j4 + j6) − sin(j4 + j6)

0 sin(j4 + j6) cos(j4 + j6)

which shows that both j4 and j6 are aligned and can be solved by:

(4.36) j4 + j6 = atan2(r21, r11)

This type of analysis shows that ikfast can also return an infinite amount of solutions

by explicitly storing the relationship between joint values. Testing j5 = π would yield

an opposite relationship j4 − j6 = atan2(r21, r11). It is worth nothing here that these

relationships would have been completely ignored if we did not pursue the c5 = r00 constraint.

Back to the original problem, we get these possible solutions:

j4 = atan2(r10s5,−r20s5)

j6 = atan2(r01s5, r02s5)

Both involve multiplication of s5, which would be meaningless if s5 = 0. However from

the above discussion, we are guaranteed that s5 6= 0, so the equations are valid. Because

atan2 is a divide, we can ignore the absolute value of s5 from the computation and only

concern ourselves with its sign. However, that cannot be computed at all. Further analysis of

R8 would yield that the solutions are consistent with s5 being positive or negative. Therefore,

we compute two solutions for j4:

(4.37) j4 = {atan2(r10,−r20) , π + atan2(r10,−r20)}

Treating j4 as a known variable allows us to compute the final solutions:

j5 = atan2

(
r10

s4

, r00

)
j6 = atan2

(
r01

s5

,
r02

s5

)
A divide by zero condition is detected sin j4 = 0, which by going through similar logic

described above allows us to compute a different set of solutions:

j5 = atan2

(
−r20

c4

, r00

)
j6 = atan2

(
−r12

c4

,
r11

c4

)
In this branch, we know that cos j4 6= 0 since we are assuming sin j4 = 0.

4.1.5 Solving 6D Transformation IK

There are two classes of kinematic chains that can be solved using the above analyses as sub-

modules by assuming the translation and rotation components are separable. Separability

allows much simpler solutions where the most complex polynomials have to be solved are

quadratic. The first type is when the last 3 joint axes intersect at a common point (Figure

4.5a), this implies that

(4.38)

[
Ree,6(j0, j1, j2) tee,6(j0, j1, j2)

0 1

]
=

[
R6(j3, j4, j5) t6

0 1

]

Figure 4.5: Two types of separable kinematic chains, which allow rotation joints (red) to be
solved separately from translation joints (blue). T0 is the base link frame, Tee is the end effector
link frame.

where t6 is constant. This allows us to build up the constraints for just the j0, j1, j2

variables by using Equation 4.15 for all i <= 6. After the first 3 joint values are solved, we

can treat Ree,6(j0, j1, j2) as a known constant matrix and solve directly for R6(j3, j4, j5) by

using constraints built by Equation 4.32.

The second type is when the first 3 joints intersect at a common point (Figure 4.5b),

which produces the following separation:

(4.39)

[
Ree,6(j0, j1, j2) tee,6

0 1

]
=

[
R6(j3, j4, j5) t6(j3, j4, j5)

0 1

]
.

We first solve for the translation component by building up all constraints in Equation

4.15 for all i >= 6. Then we treat R6(j3, j4, j5) as a known constant matrix and solve for

Ree,6(j0, j1, j2).

4.1.6 Solving 4D Ray IK

A ray is a 3D line with a preference to direction. It is defined by

(4.40) r(t) = p+ s d s ∈ R

where p is any position along the ray and d is a unit direction for a total of four degrees

of freedom. Given the target ray rn(s) = pn + s dn in the coordinate system of the last

link, the inverse kinematics of a ray is the problem is matching rn to a globally specified ray

ree(s) = pee + s dee (Figure 4.6):

Figure 4.6: The parameterization of the ray (green) with the last two axes interesting.

∃s∈R pee + s dee = T0J0T1J1T2J2...Tn

[
pn
1

]
(4.41)

dee = T0J0T1J1T2J2...Tn

[
dn
0

]
(4.42)

Here we present a solution to the inverse ray kinematics problem for the case that:

• The last 2 joints intersect at a common point.

• The problem is transformed so that the position of the ray in the last link’s coordinate

system is at the origin: Tn

[
pn
1

]
= 0. If this is not the case, then Tn could be modified

without loss of generality to satisfy this condition.

These constraints allow us to separate ray position from ray direction:

∃s∈R Ree,4(j0, j1) (pee + s dee) + tee,4(j0, j1) = t4(4.43)

Ree,4(j0, j1) dee = R4(j2, j3) dn.(4.44)

The fundamental difference between between ray IK and 3D translation/3D rotation IK

is that the ray equations for the translation component are not represented by an equality

sign. Equation 4.43 is 3 dimensions, but there are only two real constraints; ignoring any

equation can lead to completely wrong solution. The equations hold for only one value of

s, which is necessary to normalize the input ray position pee with that of the ray forward

kinematics. However, dealing explicitly with s introduces new dependencies: the solutions

to j0 and j1 depend on s, and the solutions to j2 and j3 depend on j0 and j1.

We eliminate the free parameter s in Equation 4.43 by taking the cross product with the

direction at each frame of reference:

Figure 4.7: The parameterization of the ray (green) using a sub-chain of the Barrett WAM arm.

(Ree,i dee)×Ree,i (pee + s dee) = (Ree,idn)× ti
(Ree,i dee)× (Ree,i pee) = (Ree,idn)× ti

Ree,i (dee × pee) = (Ree,idn)× ti(4.45)

We find a system of equations for j0 and j1. Because there is coupling due to the cross

product, the system of constraints is a conic section solvable using the techniques in Section

4.1.3. For direction, the equations become

(4.46) dconst = R4(j2, j3) dn,

which is a sub-problem of solving the full 3D rotation.

We show an example of solving ray IK using a sub-chain of the Barrett WAM arm to

represent the ray (Figure 4.7. From Equation 4.26 we compute an quadratic equation in

only c1, solving it produces:

cos j1= 1
0.85

“
pzdx

2+pzdy
2−pxdxdz−pydydz±

√
0.852−(pxdy−pydx)2−(pzdx−pxdz)2−(pzdy−pydz)2)

”
We then compute an equation for j0:

(4.47) j0 = atan2

(
−pzdy − pydz − 0.85c1dy

dzs1

,−pxdz − pzdx + 0.85c1dx
dzs1

)
Here we detect another divide by zero situation and handle it by setting j1 to 0, π.

Geometrically this aligns axes j0 and j2 allowing for an infinite number of solutions. produces

the following solution:

a = atan2 (−0.85dy + pzdy − pydz,−0.85dx + pzdx − pxdz)
j0 = {−a, π − a}

The direction equations are formulated as:

c2s3 = d′x

s2s3 = d′y

c3 = d′z

where d′ is computed from j0 and j1:

d′0 = dzs1 + c0c1dx − c1dys0

d′1 = c0dy + dxs0

d′2 = c1dz + dys0s1 − c0dxs1

First dz is checked for being on the boundary {±1}, otherwise it is evaluated as:

(4.48) j2 = atan2
(
d′y,−d′x

)
Then j3 is evaluated as:

(4.49) j3 = atan2

(
d′y
s2

, d′z

)
assuming sin j2 6= 0, or otherwise it is

(4.50) j3 = atan2

(
−d
′
x

c2

, d′z

)

4.1.7 Handling Redundancies

When solving IK, the robot might have more degrees of freedom than the IK parameteriza-

tion. For example, the Barrett WAM has 7 degrees of freedom, but IK only requires 6. In

this case, we pick a joint that has the least importance and assume that it is set by the user

before running the IK. We call these joints free joints, the joints the IK is solving for are

called active joints. During planning, the range of the free joints is discretized and all val-

ues are tested until a solution satisfying the joint limits, collision, and planning constraints

is found. The discretization of this free space depends on how important the joint is to

Figure 4.8: Several robot platforms whose inverse kinematics can be solved by ikfast.

the IK solution. In order to make the searching as quick as possible, the discretization value

should be as high as possible without sacrificing solution feasibility. A good rule of thumb

is that joints lying closer to the base are more important.

However, we cannot just get away with choosing the farthest joint from the base; some

joints cannot be picked as free because they can destroy the independence between the

translational and rotational components. For example, a 6D IK solution presented here

requires the first 3 or last 3 active joints to intersect at a common point. The general

heuristic we use for automatically choosing free joints is to start from the joints farthest

from the base and continue to choose closer until a solution is found.

Even though free joints are set by the user, degenerate cases due to their values can still

occur. For example, the Barrett WAM has 4 joints for solving the translation component,

and choosing the free joint to be j2, we can see that joint axes can align and create degenerate

cases when j2 ∈ 0, π
2
, pi, 3 π

2
. We create a special case for each degenerate value and re-solve

the IK equation from the start. Finding these degenerate values can be very challenging

at times; however most, if not all, robots have joint axes orthogonal to each other, so it is

safe to assume that configurations become degenerate on on all four π
2

boundaries. In fact

such checks, even if not necessary, will only make the solution more robust with the cost of

computation time.

4.1.8 IKFast Results

Figure 4.8 shows several types of robot arms where ikfast can successfully solve the solutions.

For each robot, we test just running the ikfast solver and its success rate (Table 4.1). Success

is measured by first sampling 1000-10000 times a random configuration and inputting the

destination of the robot manipulator to the IK function. If the robot has free joint values,

then these values are discretized and sampled. Failures are divided into returning a wrong

solution and failing to find a solution. The former is really dangerous; from experiments,

Computation Success Discretization

Mitsubishi PA10 7µs 100% 0.1 radians
Barrett WAM 6µs 100% 0.1 radians
Puma Arm 6µs 100%
Manus Arm 6µs 100%
HRP2 6µs 99.5% 0.1 radians
Kuka R850 5µs 100%
Willow Garage PR2 6µs 98.2% 0.1 radians
Willow Garage PR2 6µs 99.2% 0.02 radians
WAM Ray (Figure 4.7) 4µs 99.99%

Table 4.1: Average time for calling the ikfast solver with the success rate of returning correct
joint values for transformation queries.

Parameter Name Parameter Description

Free Joints joints that are freely set, used for handling redundancies
Discretization the discretization of the free joint ranges when searching
Precision number of significant digits to compute kinematics solutions in
Rounding the smallest number before being counted as zero

Table 4.2: Analytic Inverse Kinematics Parameters

ikfast never returns a wrong solution, so is not an issue here. Looking at the table, the

manipulators with 6 joints succeed all the time. Manipulators with 7 joints had the free joint

discretized at 0.1 radians so had failures because the discretization was not enough; setting

a smaller discretization fixes the problems, but is not practical. The free joint of the WAM,

PA10, and HRP2 manipulators was the 3rd joint. Both WAM and PA10 have very big joint

ranges, so there is always a solution found. The HRP2 joint ranges are small, so there are

times when a solution has not been found. The free joint for the PR2 is the first joint, which

greatly affects the solution space. Consequently, we see that PR2 succeeds a less than its

counterparts when the discretization value is the same.

Although each ikfast solution can compute the exact result, the number of operations

involved in the computation can greatly influence the numerical imprecision that gets in-

troduced due to floating-point operations. We have attempted to prioritize the searching of

solutions so the most stable and most confident solutions are selected. Even if the optimal

solutions are not always found, we have showed that the solutions are very simple, do not

require advanced math computations, and even minimize the number of divides that have

to be done. Therefore, they are much more robust than the previous general linear algebra

methods proposed for analytic inverse kinematics.

Table 4.2 shows the parameters of the ikfast algorithm. We’ve discussed how to auto-

matically set free joints and discretization values. As defaults, we compute all values to 10

significant digits and have a default zero rounding at 10−7.

ikfast fundamentally changes the way researchers approach manipulation planning prob-

lems. Instead of relying on gradient-based methods plagued with numerical errors and slow

computation times, all researchers can safely integrate analytical IK into their planners and

begin searching with all solutions.

4.2 Grasping

Grasping is one of the fundamental differences between motion planning and manipulation

planning. Grasping places explicit workspace constraints on the motions of the robot gripper

with respect to the target objects. Many grasping models have been proposed that analyze

contact modes and parameterize the geometry and space of grasps. However, there are

many advantages of using grasp sets rather than parameterized models like Support Vector

Machines [Pelossof et al (2004)] or explicit goal regions [Berenson et al (2009b); Prats et al

(2007b)]. Although it might be more compact to explicitly parameterize the space of good

grasps, such methods can be susceptible to modeling error. A grasp can easily become invalid

by moving the gripper just a few millimeters in the wrong direction, if the parameterizations

try to fill in data holes, they could easily allow invalid grasps. Instead, we stress the need

for representing all valid grasp spaces as sets. Planning and sampling from the sets is just as

convenient as parameterized models. In our analyses we attempt to maintain generality by

relying solely on sets of grasps, which can approximate a complex distribution really well,

and sampling the set is a simple matter of weighted selection. Furthermore, grasp sets can

be ordered based on priority and space exploration similar to how deterministic samplers

like the van der Corput sequence progressively cover a space [LaValle (2006)].

Each grasp is parameterized by the preshape of the gripper qgrasp, its start transformation

with respect to the target object T objectgrasp , and the direction of approach to the object vobject.

This is the minimal information necessary for the grasp planners covered in Section 3.3 to

move the gripper to the correct location. The analyses that happen after this point can be

divided into three different components:

• Picking a grasping strategy. Once the gripper is at the desired start position with

respect to the object, the grasping strategy determines how the gripper and its joints

move in order to grasp the object. This could involve analyses with sensors in the loop.

• Evaluating Grasp Performance - Once contact with the object has been deter-

mined, the performance of that contact needs to be evaluated to determine if a grasp

is stable.

• Searching the Space of all Grasps - Even though the grasp computation is an offline

process, the space of all grasps satisfying the evaluation criteria must be efficiently

explored and the manifold must be represented by a method that can be easily used

in a planner like in [Goldfeder et al (2007)].

In light of these components, we present an analysis of three different grasping strategies:

• Stable Grasps - We show to find a set of physically stable grasps for the object and

gripper pair by analyzing contact forces.

• Caging Grasps - We show how to open doors and drawers without imposing force

closure constraints, which greatly increases the robot’s feasibility space to complete

the task.

• Insertion Grasps - We show examples of how work with grasps that insert a part of

the gripper into objects.

4.2.1 Force Closure Squeezing Strategy

One of the simplest grasping strategies shown in Figure 4.9 is to approach the object from a

given direction and close the fingers until they cannot move anymore [Miller (2001)]. Touch

sensors and feedback loops are not considered, and as long as the fingers can constantly

provide torque, a simple geometric analysis of point contacts should suffice for grasping rigid

objects with a rigid hand.

Once the contact points have been extracted, most researchers use a very conservative

measure called force closure [Kragic et al (2001); Zheng and Qian (2006)] that checks to see

if any force acting on the object can be compensated by the friction cones generated from

the contact points. Any force applied from the friction cone at that point contact results

can be described as a 6D point in the wrench space. By combining all the possible wrenches

from all the contact points and computing their convex hull, it is possible to determine if all

possible forces can be compensated by testing if the convex hull includes the origin.

From the definitions above, the space of all grasps is 5 + 2 + 1 + |qgripper| DOF. |qgripper|
are for the preshape of the gripper, 2DOF are for the direction of approach, and the 5DOF

are for the starting pose of the gripper T objectgripper with respect to the object where 1DOF is for

the distance along the direction and starts at infinity. The last DOF represents the stand-off

Figure 4.9: The gripper first approaches the target object based on a preferred approach direction
of the gripper. Once close, the fingers close around the object until everything collides, then contact
points are extracted.

distance that the gripper moves back when hitting the target and before closing its fingers

[Berenson et al (2007)]. Even if the preshape is held constant, efficiently exploring an 8DOF

space is very difficult [Ciocarlie and Allen (2009)].

Our method of parameterizing the space first defines a ray {pg, dg} on the gripper’s

coordinate system, and a ray {pt, dt} on the target. Because each ray is 4 DOF and we have

two rays in two coordinate systems, we can represent the 6 DOF of the grasp space, the

other 2 DOF are manually set as the roll around the approach axis and the final standoff.

We compute the gripper pose T objectgripper by aligning the two rays together and making the

directions point towards each other (Figure 4.9). Figure 4.10 shows how the rays {pt, dt} on

the target are sampled. We first start with sampling the surface of the object by casting rays

from a bounding box (or sphere) to the target object. Then for each hit point, we compute

the surface normal of the object. Using the surface normal, we can sample all directions that

Figure 4.10: A simple way of parameterizing the grasp search space.

Figure 4.11: Examples of the types of robot hands that can be handled by the grasp strategy.

are within a fixed angle between each normal. Depending on how dense the sampling is, it

can yield anywhere from 1,000 to 100,000 different locations to test grasps. This analysis is

very effective and can be applied to many different grippers as shown in Figure 4.11.

For the 4DOF Barrett Hand, we usually find that 30% of the tested grasps yield force

closure, so it is not necessary to explore the space much. In fact, we could get away with

setting just one approach ray {pg, dg} for the gripper. For the 1DOF HRP2 hand, the results

are much more grim with less than 3% of the explored grasps yielding force closure. We

attribute this with difficulties of 1DOF grippers with the grasp strategies. This requires

several approach rays {pg, dg} to be set for 1DOF grippers. Changing {pg, dg} and the

stand-off can have an immense effect on the type of grasps produced. Figure 4.12 shows

how changing directions can prioritize between pinch grasps and power grasps. Avoiding

certain parts of the gripper is another factor that should be considered when building grasp

sets. Sometimes sensors can be attached to the gripper, and they need to be inserted in the

geometry of the gripper for avoiding spurious contact with anything.

One of the biggest criticisms against computing force closure on point contacts is that

fragile grasps can easily be classified as force closure stable grasps. Figure 4.13 shows several

fragile grasps with high force closure scores with the HRP2 hand. In order to prune such

grasps, many researchers have proposed adding noise to the grasp generation process and

computing force closure afterward. If the randomly displaced grasps fail with a certain

percentage, then they are rejected. Although such a method has been shown to work with

the Barrett Hand where 30% of the grasps are in force closure [Berenson et al (2007)], it

rejects all grasps for HRP2. The reason is because edge contacts that occur when the

gripper’s surface is aligned with the target surface are reduced to point contacts when even

a small amount of noise is added.

We present a new robustness measurement method that computes a grasp’s repeatability

rather than its stability when the target object experiences translational and rotational

Figure 4.12: Grasps for the HRP2 gripper with a wrist camera mounted. Grasps contacting the
wrist camera are rejected automatically. As the gripper approach varies the grasps change from
power grasps to pinch grasps.

disturbances. A ∆T offset in the target will produce a ∆P offset for the final gripper position

along with a ∆Q joint offset. Using knowledge of the geometry of the object and kinematics

of the gripper, we can compute the standard deviations of the movement of each point on

the surface of the target σT and the gripper σG. The main intuition behind computing grasp

repeatability is that for fragile grasps, the gripper will slip and therefore move more than

the object has been disturbed:

σT � σG.

For stable grasps, the object and gripper deviations should be the same:

σT ≈ σG.

ComputeGraspRepeatability (Algorithm 4.1) shows how to compute the repeata-

bility statistics. It first takes the expected standard deviation of the target object as a

parameter. Then for every iteration, it samples a random rotation and translation such that

any point on the objects surface moves no more than σT . In order to compute rotations

with the correct error, we rotate around a random axis with the rotation angle scaled by

the inverse of the maximum distance of a point on the target surface. The grasp strategy is

executed with the new target transformation, and we record the the gripper transformation

Figure 4.13: Fragile grasps that have force closure in simulation (contacts shown).

Algorithm 4.1: ComputeGraspRepeatability(σT)

/* ρ ∈ [0, 1] - uniform random variable */

TG ← ∅ , Q ← ∅1

for iteration = 1 to N do2

RotationContribution ← ρ3

θ ← RotationContribution * σT
MaxDistance(target)4

Tobject ←

Rodrigues(
ρ− 0.5

ρ− 0.5

ρ− 0.5

 , θ) RotationContribution ∗

2ρ− 1

2ρ− 1

2ρ− 1

0 1

5

SetTransform(target,Tobject)6

{T objectgripper, qgripper} ← GraspStrategy()7

Append(TG,ExtractTranslation(T objectgripper))8

Append(Q,qgripper)9

end10

σjoints ← StandardDeviation(Q)11

σQ ← maxchain
∑

j∈chain σjoints(j) * MaxJointContribution(j)12

σG ← σQ+ StandardDeviation(TG)13

if σG > γσT then14

return fragile15

return stable16

with its final joints into TG and Q. We compute the contribution from the gripper joints

by multiplying the standard deviation of the angle with the maximum distance of any child

link from the joint’s axis. These errors are then accumulated across the kinematic hierarchy

to yield σQ. We compute the final σG by adding σQ to the translational standard deviation

of the gripper positions. This value is compared with σT to yield the final decision for a

repeatable grasp. γ is set to 0.7 for all experiments and N is set to 40 when σT is set to 1cm.

When building grasp sets for the HRP2 hand, out of 18,000 tests 228 succeed the force

closure test. When applying the ComputeGraspRepeatability filter, about 171 of grasps

are left with all fragile grasps pruned out. 75% of the original grasps remain showing that

the method does not reject that many good grasps in comparison to previous robustness

measurements. The computation times increase proportional to N .

Table 4.3 shows the set of parameters necessary to for generating force-closure grasp sets.

Parameter Name Parameter Description

Target Surface Sampling how to sample the target surface for approach rays
Robot Surface Sampling how to sample the robot surface for approach rays
Gripper Preshapes a set of initial joint values for the gripper
Rolls about Direction set of rolls of the robot around the approach axes
Standoffs set of standoffs from the target object
Friction friction between contact surfaces

Table 4.3: Force-closure Grasping Parameters

Figure 4.14: Example caging grasp set generated for the Manus Hand.

4.2.2 Caging Strategy

For objects rigidly constrained by the environment, we can relax the grasp definition by

considering caging grasps. Section 3.4 showed that planning with caging grasps can greatly

increase the feasible range of manipulator motions. We use RRTExplore (Algorithm 3.9)

to generate a caging grasp set by exploring the space around an initial seed caging grasp g.

In our experiments, we parameterize the grasp space by freezing the joints of the end-effector

and searching with the end-effector pose in SE(3) with three dimensions for translation and

four dimensions for rotations represented as quaternions. Before RRTExplore is run, we

set the target to a configuration where the handle is exposed well. Even though we only

consider collisions between the object and the gripper, a door is composed of several moving

links, which can interfere with the caging sets. In practice, we found that the RRT explored

the constrained space quickly and efficiently due to its neighborhood extension step; uniform

randomized sampling would be very inefficient in this case. Because RRTs are resolution

complete, they can return grasps that are very close to each other, therefore, we run a nearest

neighbor filter using the union of all the valid caging grasps. This allows us to reduce the

caging grasp set by 10 times while still maintain a good span of the caging space. Figure

4.14 shows two different caging grasp sets produced from this process.

Algorithm 4.2: TestCagingLinearPath(Tgripper,∆θ)
success← 0 for iteration = 1 to N do1

SetTransform(gripper,Tgripper ∆T)2

if not CheckCollision(gripper,target) then3

for ∆q ∈ SampleConfigurationDirections() do4

caged ← false5

for θ ∈ [−∆θ,∆θ] do6

SetConfiguration(target,qtarget + θ∆q)7

if CheckCollision(gripper,target) then8

caged ← true9

end10

if not caged then11

break12

end13

if not caged then14

return false15

success ← success + 116

if success > M then17

return true18

return false19

end20

TestCagingLinearPath (Algorithm 4.2) is a method to check if a grasp is caging the

target configuration by searching for an escape route in a random direction ∆q. First, we

randomly jitter the grasp transformation with ∆T to allow us to reject fragile grasps as

shown in 4.15. Before we can test a new jittered gripper, we have to check that the gripper

and target are not initially colliding. If not in collision initially, we iterate on a cached set of

configuration directions on the target. For 1 DOF doors, two directions are tested {−1, 1},

Figure 4.15: A fragile grasp that was rejected by the random perturbation in the grasp exploration
stage, even though it mathematically cages the handle.

for higher configuration spaces, the directions have to be sampled carefully. If the door can

move at least ∆θ along a specific direction without getting into collision with the gripper,

then there is no cage and the grasp is rejected. If M jittered configurations succeed the

caging test, then we return success. We set M on the order of 20 and the number of trials

N for collision-free jittered configurations on the order of 100.

The initial seed grasp g caging the target object can be obtained by randomly exploring

the surface of the object until it passes the caging criteria. Efficiently searching the surface

of an object requires the samples are uniformly distributed and can explore the space rapidly

[LaValle (2006)].

By using caging grasps rather than grasps that fix the target object’s configuration

through contact force, we are able to provide the manipulator with significantly more flex-

ibility in accomplishing the task while still guaranteeing the object cannot escape from the

end effector’s control. One additional detail discussed in Section 3.4 is the contact grasp set

Gcontact. At the end of the plan, we need to localize the target object being caged by the

gripper. By always ending with a grasp that achieves the form closure condition, then we

can guarantee that the object maintained at its desired final configuration,

4.2.3 Insertion Strategy

In industrial settings, it is very common for manipulators to use magnets or insert a pin

into holes in the part rather than to use power grasps. In fact power grasping of target

objects is mostly done in the research field where grippers are more human-like and rarely

done in industrial manipulation. We show how the theory of the previous sections can be

Figure 4.16: Goal is for both manipulator tips to contact the surface of the target object. The
left box shows failure cases that are pruned, the right box shows the final grasp set.

applied to a very simple example of generating and using grasp sets for a gripper with two

magnetic tips. Figure 4.16 shows a manipulator with two magnets attached at its fingers

and the bracket that needs to be picked up. Since the magnets act as point contacts, grasps

are much more stable when both tips contact the part surface in a flat region such that noise

cannot upset the part’s relative transformation.

In order to generate the grasp tables, we first sample the target bracket surface for

possible approach directions similar to Figure 4.10. For every grasp tested, we gather the

contacts and test for these two things instead of force closure:

• the contact points footprint is as big as the distance between the magnet tips,

• and all contact normals roughly point in the same direction.

We use ComputeGraspRepeatability to make sure that the magnet tips are contacting

Figure 4.17: Idustrial robot using the magnet tip grasps to pick parts out of a bin.

a wide area and not a small obtrusion that is hard to hit when executing the grasp in the

real world. Figure 4.16 shows the results of the grasp generation process. The red box to the

left shows some of the bad grasps that are present in the tested sets. The green box in the

right shows the final set of grasps each of the magnets is contacting a wide flat region. Using

this grasp set, we can immediately apply the grasp planners to simulate a robot picking up

parts from a bin and placing them at a destination (Figure 4.17).

4.3 Kinematic Reachability

Every manipulator has a reachability region that specifies where the gripper can move to.

The reachability space can be used to quickly analyze the workspace for task feasibility

without performing any planning as shown in [Zacharias et al (2007, 2009)]. Knowing the

reachability region can help robots quickly prune bad grasps, or can help mobile robots

move to the correct place with the highest reachability. Reachability also plays an important

role for two-handed robots since have to figure out where to place the object so that both

manipulators can handle it [Zacharias et al (2010)]. This section tackles the problem of

intelligently biasing configuration space samples when the only goals given are the final

grasps.

In this thesis the reachability space is used for:

• quickly pruning grasps when planning without base placement (Section 3.3),

• introducing biasing in configuration samplers to help explore regions where the arm is

more maneuverable (Section 3.6.3),

• computing the inverse reachability for base placement sampling (Section 4.4),

• and quickly pruning the visible sensor locations (Section 5.1).

We represent the kinematic reachability as KR : SE(3)→ R that maps a 6D end-effector

pose with respect to the arm’s base into the density of valid solutions. There are two ways

to compute such a map: uniformly sample 6D end-effector positions and record the number

of inverse kinematics solutions, or randomly sample arm configurations and accumulate the

end-effector poses. The latter method requires normalizing with respect to the density of

the sampled arm configurations and keeping track of unique solutions. The normalization

is non-trivial and can lead to biasing errors, therefore we prefer the former explicit 6D

end-effector sampling method. There are two advantages with it: the entire workspace is

guaranteed to be explored, and the analytical inverse kinematics solvers of Section 4.1 allow

exact computation of the size of the solution space.

Figure 4.18: Barrett WAM and Yaskawa SDA-10 kinematic reachability spaces projected into 3D
by marginalization of the rotations at each point.

We first need to sample a set of positions in sphere in R3 around the arm. Because

computation is proportional to the volume of the sphere, we use the following analysis to

find the smallest sphere encompassing the end-effector’s possible reach. Every joint has

an anchor ai and a joint axis di. We compute the closest point pi on {ai, di} to the next

consecutive joint on the chain {ai+1, di+1} using:

ti =
((ai − ai+1)× di+1) · (di × di+1)

|di × di+1|2

pi = ai + tidi.(4.51)

We set the last point pn as the tip of the end effector used for inverse kinematics. Finally,

we set the sphere center to p0 and the radius to
∑

i |pi+1 − pi|. For prismatic joints, we add

the greatest joint limit into the radius.

Generate KinematicReachability() (Algorithm 4.3) takes the desired resolution of

the translation and rotations samples and produces a list of poses in SE(3) with their solution

density. Uniformly sampling SE(3) with low discrepancy and dispersion is very difficult;

furthermore, it is not desirable to introduce any random components with database building

since random sampling on average has much worse dispersion than informed deterministic

sampling [LaValle (2006)]. Fortunately, there exist good deterministic samplers for R3 and

SO(3), which are covered in Section 4.3.1. The cross product of the independent translation

Algorithm 4.3: Generate KinematicReachability(arm,∆pR, ∆θR)

{pi} ← ComputeJointIntersections()1

Radius ← PrismaticLimits + |∆pR|+
∑

i |pi+1 − pi|2

{ti} ← {t | t ∈ Samples(R3,∆pR), |t− p0| ≤ Radius}3

{ri} ← Samples(SO(3),∆θR)4

Reachability ← ∅5

for {r, t} ← {ri} × {ti} do6

valid← 07

for qarm ∈ IK({r, t}) do8

SetConfiguration(arm,qarm)9

if not IsLinkCollision(GetAttachedLinks(arm)) then10

valid← valid+ 111

end12

Append(Reachability,{r, t, valid})13

end14

and rotation samples yield a final sampling of SE(3). For every end-effector pose {r, t}, we

count the number of inverse kinematics solutions that are not colliding with the attached

links of the arm and create the final list. Figure 4.18 shows the projected reachability volume

generated for two different robots evaluated with ∆θR = 0.25 and ∆pR =
[
0.040.040.04

]
.

The number of SO(3) samples is 576 and the number of R3 samples is 4πRadius3

3∆pR,x∆pR,y∆pR,z
.

Each of the operations using the reachability space requires efficient nearest neighbor

retrieval given an end effector pose. We store each rotation r ∈ SO(3) as a quaternion. If

two quaternions are close to each other and on the same hemisphere, then we can define a

simple distance metric between two poses:

(4.52) δ({r1, t1}, {r2, t2}) =
√
constmin(|r1 − r2|2, |r1 + r2|2) + |t1 − t2|2

where the euclidean distance for close quaternions is close to the Haar measure on SO(3).

Because most kd-tree implementations work in Euclidean space, we add both {r, t} and

{−r, t} to simultaneously represent the two hemispheres. The nearest neighbors imple-

mentation require a little book-keeping in order not to count a rotation twice. The final

implementation of KR (Algorithm 4.4) uses kd-trees and is reminiscent to kernel density

evaluation. Intersection between a set of poses and the reachability is performed by evalu-

ating KR for each of the poses and thresholding the density of the valid solutions. Because

the nearest neighbor query is a tree search, intersection with a set of M poses is on the order

of O(M log |Reachability|) time.

Algorithm 4.4: KR(r,t)

valid← 01

ω ← 02

∆R ←
√
c∆θ2

R + |∆pR|23

for {ri, ti, validi} ∈NearestNeighborsRadius(Reachability, {r, t}, 2 ∆R) do4

ωi ← exp(− δ({ri,ti},{r,t})2
0.5∆2

R
)5

valid← valid+ ωi validi6

ω ← ω + ωi7

end8

return valid
ω

9

Parameter Name Parameter Description

∆θR discretization for rotations in terms of the Haar measure
∆pR discretization for translations

Table 4.4: Kinematic Reachability Parameters

Figure 4.19 shows the comparison of the reachability spaces of the left arm for a humanoid

robot. If the arm includes one of the chest joints in its definition, then the reachability spaces

will be much spatially bigger and about 1.5 times more dense. The wrist has a differential

drive mechanism that produces a really unique joint limits range of the two motors. By

considering the full range of the joint limits, the reachability density in R3 increases by two

times. Given the small reachability volume of HRP2 compared to the robots in Figure 4.18,

it is vital to use the entire robot free space.

Table 4.4 describes all the parameters necessary for generating the reachability.

4.3.1 Uniform Discrete Sampling

Because computation of KR directly depends on the number of samples of SO(3) and R3,

ideally we want the minimal number of samples that still span the entire pose space of the

arm and have the lowest dispersion and discrepancy.

To sample SO(3), we use recent results from [Yershova et al (2009)] where they use the

Figure 4.19: The HRP2 reachability space changes when the chest joint is added (left vs right).
Also, the HRP2 wrist has a unique joint limits range, which can increase the reachability density
by 2x if handled correctly.

fact that SO(3) ∼= S1⊗̃S2 and represent each rotation with Hopf coordinates {θ, φ, ψ} where

{θ, φ} ∈ S2 , ψ ∈ S1

quaternion =

cos θ

2
cos ψ

2

cos θ
2

sin ψ
2

sin θ
2

cosφ+ ψ
2

sin θ
2

sinφ+ ψ
2

 .

The problem reduces to uniformly sampling S1 and S2 and then taking their cross product

to form full set of Hopf rotations. The HEALPix algorithm [Gorski et al (2005)] is used for

sampling a multi-resolution grid of the 2-sphere S2. In order to maintain low discrepancy,

the method in [Yershova et al (2009)] works by subdividing each dimension by 2 from the

previous level. This yields a total of m1m28L samples where m1 is the initial subdivisions of

S1 set to 6, and m2 is the initial subdivisions of S2 set to 12.

To sample R3, we use a lattice where the three axes are prime with respect to the field

of fractions on the integers Z [Matousek (1999)]. Assuming we need to generate N samples

inside a cube whose sides are in [0, 1], the ith sample is generated by:

(4.53)

(
i

N
, {0.5 + i

√
5

2
}, {0.5 + i

√
13}

)
where {x} denotes the fractional part of x. Using this sampler, the number of samples

required for the average distance between neighbors to be 0.04 is N=4733.

4.4 Inverse Reachability

Computing placements of the robot base depending on the task and robot kinematics is

important for analyzing the scene [Stulp et al (2009)]. We define inverse reachability IRarm :

SE(3) → (SE(2) → R) as a function that takes in an end effector pose and returns a

distribution on the 2D plane of where the base can be in order to achieve that particular

end-effector pose. Because we are keeping the end-effector as a parameter, it is necessary to

work with the inverse transformations of all the poses stored in the kinematic reachability

map. In order to convert this map to 2D base movements, we project the inverted 6D map

onto the 2D plane and start counting solution density. Because inverse reachability stores

a purely geometric relationship, the return values of IR are the density of solutions rather

than probability of existence of a solution. Some types of robots like humanoids can have

joints connecting the arm base and the robot base like the torso joints. The maps generated

in the following analysis are only valid for the particular torso joints it was trained with;

therefore application of the map requires the robot be moved to those joints ahead of time,

or multiple maps be trained for every unique value of the torso joints.

In order to efficiently construct and query the inverse reachability map, we first compute

a set of equivalence classes invariant to 2D translations and in-plane rotations. Without loss

of generality we assume that the 2D plane that the base moves on is on XY going through

the origin. We let X be a discrete set of all kinematically reachable end-effector poses with

respect to the robot base. The equivalence classes are built using the poses in X . From a

mathematics point of view we are interested in the inverse map, but from a computational

point of view we first cluster the equivalence classes in the original map before inverting. We

define a rotation on the XY plane as Rz(θ) and the group of all rotations as

(4.54) Rz =
{
Rz(ψ) | ψ ∈ S1

}
We can now define an equivalence class of all rotations similar to r ∈ SO(3) that differ

only by a rotation about the z axis as:

(4.55) rRz = {rz ∗ r | rz ∈ Rz}.

Figure 4.20: Shows one of the extracted equivalence sets for the Barrett WAM (869 sets), HRP2 7
DOF arm (547 sets), and HRP2 8 DOF arm+chest (576 sets). Each was generated with ∆θI = 0.15,
∆zI = 0.05.

where ∗ denotes the action of applying one rotation after another. Similarly the set of

plane transformations can be defined by

(4.56) Pz =
{
{Rz(ψ), (x, y, 0)} | ψ ∈ S1, x ∈ R, y ∈ R

}
For clarity, we denote p(r, t) ∈ SE(3) is the pose with rotation r ∈ SO(3) and translation

t ∈ R3. It is homeomorphic to the transformation notation T used so far, so it is used

interchangeably. Given an arbitrary pose p ∈ SE(3), its equivalence class with respect to

2D plane movements becomes:

(4.57) pPz = {pz ∗ p | pz ∈ Pz} .

We compute the equivalence classes for the entire set X by sampling a pose pi ∈ X , and

extracting all similar poses to form a discrete set Xi:

(4.58) Xi = {p | p ∈ X , p ∈ piPz} .

The entire process is repeated with the remaining poses X − Xi until we have a set of

equivalence sets {Xi}. Each extracted equivalence set Xi is essentially indexed by an out-of-

plane rotation rµ modulo rotations on z and a distance from the 2D plane zµ and, which is

3 degrees of freedom in total. For each Xi, we extract {rµ, zµ} and convert each of the poses

in SE(3) into poses in SE(2). The 2D poses are then inverted and stored into the inverse

reachability map indexed by {rµ, zµ}.
Every equivalence class pPz has a representative element that has no translation along

XY and rotation along Z. ProjectPose(p) (Algorithm 4.5 shows how a pose gets projected

into the representative element of its class.

Algorithm 4.5: ProjectPose(p)

{r, t} ← ExtractQuaternionTranslation(p)1

ψ ← atan2(−rz, rw)2

r′ ←

qw cosψ − qz sinψ

qx cosψ − qy sinψ

qy cosψ + qx sinψ

qz cosψ + qw sinψ

3

t′ ←
[
0 0 tz

]
4

return {r′, t′, ψ, tx, ty}5

Generate InverseReachability (Algorithm 4.6) shows how to generate the list of

equivalence classes taking into account practical issues like thresholds for set membership

and computation complexity. The algorithm first starts by re-ordering X so that the poses

with the most neighbors are considered first, which allows extraction of more meaningful

equivalence sets. Neighbor density is computed modulo 2D plane movements where the

rotation component is weighted by 1
∆θI

and the translation component by 1
∆zI

. The reason for

weighting is because nearest neighbors treats the pose as a 7 DOF quaternion and translation

value. Usually mixing up translation and rotation is very difficult, but we roughly estimate

their importance using the thresholds set by the user. The densest pose pi ∈ X is sampled

and its nearest neighbors modulo 2D plane movements are computed such that the out-

of-plane rotation and height of the neighbor are within the ∆θI and ∆zI from pi. The

information on the neighbors are stored into three sets:

• Xi - the original poses most similar to pi,

• Xprojected,i - the poses with 2D translations and in-plane rotation removed,

• X2D - the extracted 2D translations and in-plane rotations.

Since Xprojected,i are not necessarily all the same, we compute the mean rotation and height

that minimizes the sum of squared distances; for rotations, we use nonlinear optimization

with the Haar measure. The mean projected poses of each equivalence set are used for

nearest neighbor computation in the sampling phase of the inverse reachability map.

Algorithm 4.6: Generate InverseReachability(arm,∆θI ,∆zI)

X ←
{
T basearm p(r, t) | {r, t, valid} ∈ Reachability, valid > 0

}
1

/* Order the elements in X based on density */

Xprojected ← {ProjectPose(p) | p ∈ X}2

searchthresh←
√

(1− cos ∆θI)2 + (sin ∆θI)23

Density4

← {‖NearestNeighborsRadius(Xprojected, p, searchthresh)‖ | p ∈ Xprojected}
X ← Order(X ,Density)5

/* Build equivalence sets */

Xall ← ∅6

for pi ← HighestDensityElement(X) do7

{r′i, p′i} ← ProjectPose(pi)8

Xi ← ∅, Xprojected,i ← ∅, X2D ← ∅9

for p ∈ X do10

{r′, t′, ψ, tx, ty} ← ProjectPose(p)11

if δ(r′i, r
′) ≤ ∆θI and |t′i − t′| ≤ ∆zI then12

Append(Xi,p)13

Append(Xprojected,i,{r′, t′})14

/* Store the inverted 2D pose */

Append(X2D,{−ψ,−tx cosψ − ty sinψ, tx sinψ − ty cosψ})15

end16

{rµ, zµ} ← Mean(Xprojected,i)17

{rσ, zσ} ← StandardDeviation(Xprojected,i)18

X ← X −Xi19

Append(Xall,{rµ, zµ, rσ, zσ,X2D})20

end21

Figure 4.20 shows some of the 2D poses in single equivalence sets. The HRP2 8 DOF

reachability space has 200,000 poses and 576 equivalence sets were extracted from it using

∆θI = 0.15 and ∆zI = 0.05. As a comparison, the 7 DOF arm has 547 sets, which shows

that regardless of how complex the arm chain gets, the complexity of the inverse reachability

Figure 4.21: Base placements distributions for achieving specific gripper locations; darker colors
indicate more in-plane rotations.

map is mostly governed by the thresholds for set membership. Figure 4.21 shows the base

placement distributions for several equivalence classes where the gripper of the robot is

grasping the target object.

The inverse reachability maps can be efficiently sampled by first indexing into the equiva-

lence sets and then sampling the underlying probability distribution represented by a Mixture

of Gaussians. Index InverseReachability (Algorithm 4.7) uses the standard deviation

of the elements in each equivalence set to return the set with the highest probability of

including the pose. Because ProjectPose removes all 2D base contributions, it is possi-

ble to compute the distance to the equivalence sets with a weighted Euclidean norm. The

computation is further sped up by organizing Xall into a kd-tree.

Algorithm 4.7: Index InverseReachability(p)

{r, t, ψ, tx, ty} ← ProjectPose(p)1

Dbest ←∞ , X2D,best ← ∅2

for {rµ, zµ, rσ, zσ,X2D} ∈ Xall do3

D ←
(
δ(r,rµ)

rσ∆θI

)2

+
(
δ(t,zµ)

zσ∆zI

)2

4

if D < Dbest then5

Dbest ← D , X2D,best ← X2D6

end7

return {Dbest, X2D,best, ψ, tx, ty}8

Sample InverseReachability (Algorithm 4.8) extracts the closest equivalence set

and then uses kernel density estimation on the set of 2D poses X2D to sample from a con-

tinuous distribution. The world pose of the gripper is first converted into the robot base’s

coordinate system, which takes into account the torso joints that joint the robot base to the

arm base. Once the closest equivalence class is returned, a discretization threshold Dτ is

used to determine if an equivalence set is too far away for inverse kinematics to come up

Algorithm 4.8: Sample InverseReachability(Tworldgripper){
D,X2D, ψ

gripper, tgripperx , tgrippery

}
← Index InverseReachability(T baseworldT

world
gripper)1

if D > Dτ then2

/* No base placements for this gripper pose. */

return ∅3

{ψ′, t′x, t′y} ← SampleMixtureGaussians(X2D, σ =
(

∆θR
∆zI
∆θI

, ∆pR,x, ∆pR,y

)
)4

{ψworld, tworldx , tworldy } ← ProjectPose(Tworldbase)5

qbase ← {ψworld, tworldx , tworldy } ∗ {ψgripper, tgripperx , tgrippery } ∗ {ψ′, t′x, t′y}6

return qbase7

Parameter Name Parameter Description

∆θI discretization for rotations in terms of the Haar measure
∆zI discretization of the distance normal to plane of movement.
Bandwidth σ the bandwidth of each gaussian kernel, depends on discretization
Joint Values preset values for joints connecting the robot base to the manipulator base

Table 4.5: Inverse Reachability Parameters

with a valid solution. We use gaussian kernels with a bandwidths that take into account the

discretization of the reachability generation process: in-plane rotation bandwidth is ∆θR
∆zI
∆θI

and XY translation bandwidth is (∆pR,x, ∆pR,y). Intuitively the factors should be propor-

tional to the underlying reachability discretization; furthermore, the rotation and translation

have to be normalized with respect to each other with the ∆zI
∆θI

factor. The distribution of

poses in X2D assumes that the gripper is at the origin of the coordinate system. In order to

transform this into the world, we transform every sampled pose in X2D by the 2D translation

and in-plane rotation extracted by the gripper. Because we were working in the robot base’s

coordinate system, we have to transform back to the world coordinate system to yield the

final qbase configuration. ∗ is the transformation operator on 2D poses. Note that we are

not transforming by the full pose Tworldbase since we’ve already indexed an equivalence set that

takes its height and out-of-plane rotations into account.

In the analyses above, each pose in the reachability set X is treated with equal weight,

which makes the explanations easier. But in practice, the inverse kinematics solver and self-

collision checking allows certain end-effector poses to have many more configurations than

others. When building the inverse reachability maps, we keep track of the count of inverse

kinematics solutions of each original pose in X . This information propagates down into the

2D pose sets for each equivalence set X2D and in the end we end up with a weighted mixture

of gaussian distribution. When considering the full computational cost of sampling inverse

reachability, empirical results show that we can generate feasible base placement results 2.5

times faster than uniform random sampling.

Table 4.5 shows the parameters necessary to generate the inverse reachability maps.

4.5 Grasp Reachability

By combining grasp sets and inverse reachability, it becomes possible to compute the relation

between the target object and the base placement of the robot at its current configuration.

We call this relationship grasp reachability and use it in the form of a distribution on qbase to

sample base placements as covered in Section 3.6.1. Figure 4.22 shows how the distribution

behaves when grasps validated against the current environment are used to seed the inverse

reachability maps. The BarrettHand/WAM combo creates really large grasp reachability

regions because of two major contributing factors: the Barrett Hand can grasp the cup from

almost any direction, and the WAM reachability space is very big. The middle column shows

the grasp reachability space when the 7DOF arm is computation, and the right column shows

the a scene with four objects while using including the chest as part of the arm definition.

Algorithm 4.9: Sample GraspReachability(arm, G)

weights ← ∅1

G← ∅2

for grasp ∈ G do3

GripperTransforms ← GraspValidator(grasp)4

if GripperTransforms 6= ∅ then5

Tworldgripper ← LastElement(GripperTransforms)6

X2D ← Index InverseReachability(T baseworldT
world
gripper)7

Append(weights,|X2D|)8

Append(G,{grasp,GripperTransforms})9

end10

{grasp,GripperTransforms} ←WeightedSampling(T ,weights)11

qbase ← Sample InverseReachability(LastElement(GripperTransforms))12

return {qbase, grasp.qgripper,GripperTransforms}13

The grasp reachability sampler validates the set of possible grasps and uses them to aggre-

gate the inverse reachability maps into a mixture of gaussians. Sample GraspReachability

Figure 4.22: The grasp reachability map using validated grasps to compute the base distribution
(overlayed as blue and red densities). The transparency is proportional to the number of rotations.

(Algorithm 4.9) shows a naive implementation of the processes necessary to sample a con-

figuration. In the beginning, all the valid grasps are computed and the weight is computed

from the number of poses contained inside its associated 2D pose map. Because the inverse

reachability maps are mixture of gaussians, the weights are additive, so we can first gather

all the equivalence sets of all the different grasps and evaluate a weight for each grasp de-

pending on the number of basis vectors in its distribution. We can sample from the entire

distribution by first choosing a grasp based on its weight. Once a grasp is sampled, we just

call into the inverse reachability map sampler using Algorithm 4.8.

In practice, we progressively build up the distribution and cache previous computations

as the sampler is called again, which allows a new sample to be computed on the order

of milliseconds while taking less than 0.2s to initialize the distribution. Besides sampling,

there are many other practical uses for grasp reachability like performing workspace analysis.

Whenever a task has to be performed by a robot in a factory, engineers have to carefully

consider the robot kinematics, robot placement, part trajectories, and surrounding obstacles

and safety measures. Engineers have to pick the cheapest and most robust solution. By

Parameter Name Parameter Description

Validity Threshold threshold of the distribution to accept grasps

Table 4.6: Grasp Reachability Parameters

explicitly modeling the workspace of the robot in the context of manipulating parts, it

becomes possible to choose the cheapest robot that can achieve the task and how to minimize

the workspace. Once a workspace heuristic based on the current task has been developed,

it is possible to turn the workspace design problem into a robot kinematics design problem

[III and Shimada (2009)].

Table 4.6 shows the parameters necessary to sample from grasp reachability.

4.6 Convex Decompositions

Figure 4.23: Examples of convex decompositions for the geometry of the robots.

We explain the usefulness of convex decompositions in manipulation planning algorithms

and present three different applications to manipulation planning that become possible using

the decomposition. It is common for researchers to approximating a mesh using a convex

hull for its mathematical simplicity, but convex hulls can lead to very gross approximations

to the geometry rendering them useful only for pre-testing a conditions before doing a re-

test with the real geometry. It is also common to approximate a mesh as a decomposition

of primitive shapes like boxes and spheres. However, the most general primitive that lends

itself to many mathematical theories is the convex hull, and decomposing a mesh into a set

Figure 4.24: Examples of convex decompositions for the geometry of the robots.

of convex hulls can lead to many reductions in the complexity of the math. Figure 4.23

shows convex decompositions for three robots using the library from [Ratcliff (2006)].

4.6.1 Padding and Collisions

Collision checking with convex hulls is no more complex than collision checking with triangle

meshes; both use the efficient Separating Axis Theorem [Eberly (2001)]. Although triangles

can be considered a very simple type of convex hull, the convex decomposition can place

restrictions on the eccentricity of the convex shape, making collision tests more stable by

disallowing sharp edges. Furthermore, each of the robots shown in Figure 4.23 has on the

order of one hundred hulls making collision detection very fast. In its simplest form, a convex

hull is defined by a set of planes Π where A 3D point x is inside the convex hull if

(4.59) ∀P∈Π P

[
x

1

]
≥ 0.

One operation commonly performed for planning is to pad the collision meshes with

5mm-10mm such the robot can at least keep a safety margin around environment obstacles.

Adding padding to guarantee a distance δ introduces cylinders for every edge and spheres

for every vertex in the collision mesh, which can be slow to handle. In order to compute

a padded convex hull, we add a plane for every edge and a plane for every vertex. The

normals of the new planes are the average of the normals adjacent planes with each plane

going through their respective edge and vertex. Then all the planes are pushed δ back along

their normals:

(4.60) ∀P∈Π
S

Πedge
S

Πvertex P

[
x

1

]
≥ −δ.

Figure 4.25: Convex decomposition makes it possible to accurately prune laser points from the
known geometry.

Figure 4.24 shows the final padded convex hull. It should be noted that convex decom-

position meshes cannot be used for self-collision tests. Self-collisions are very special should

be checked with the original meshes, otherwise the robot will initially start in self-collision

and will never be able to move. Although hard self-collision checking with convex hulls is not

recommended, it is possible to generate a continuous gradient proximity distance [Escande

et al (2007)]. Such proximity distances are commonly used to apply safety torques to the

robot joints inside the controller real-time loop. The proximity distance can also be used to

prioritize configurations when sampling the configuration space.

4.6.2 Advantages of Volume Representations

When using stereo vision or laser range data to compute unknown dynamic obstacles in the

environment, it becomes necessary to remove points that lie on already known geometry in

the environment. For example, Figure 4.25 shows two scenes where the laser range finder

also captures part of the robot arm. These points can be accurately pruned by using padded

convex hull, an operation which is very difficult to perform with arbitrary closed triangle

meshes approximating the surface of the robot. Along with subtracting the robot’s points,

the bottom scene also shows subtraction of an already detected target object. Every point

that passes these tests is added as a small box with the size depending on the error model

of the sensors. From experiments with planning in environments with real-time range data,

it is not feasible to check all the range data with all the obstacles in the environment; even

with parallelization, it will kill the update rate. Therefore, we only prune range points that

intersect the robots and target objects we plan with.

4.6.3 Configuration Distance Metrics

All randomized planners first define a configuration space in which a path is searched in.

The distance metric in this space greatly affects planner performance because it dictates the

step size of the planner. As was discussed in Chapter 3, a very important operation in path

planning is checking if a line segment defined by points q0 and q1 is completely inside the

free space:

(4.61) ∀t∈[0,1] tq0 + (1− t)q1 ∈ Cfree

where the most difficult question is how to discretize the [0, 1] interval so that the last

number of checks are made. Many space decomposition methods have been proposed for

efficient line collision checking, but the simplest and fastest one is to discretize the interval

with a step size ∆s using a distance metric δ(q, q), LineCollisionDetection (Algorithm

4.10) shows a naive implementation. First a ∆q is computed using subtraction that respects

the 0 and 2π identification for continuous joints. For every step, we find a new configuration

along ∆q such that the distance from the current configuration is exactly ∆s. Since we

are assuming a triangle inequality, we can test if we have surpassed the line-segment and

terminate the collision.

The problem is finding a distance metric that can reduce samples on line collisions while

helping RRTs sample the space of end-effector positions more uniformly. Even without

considering a particular family of distance metrics, we can scale each coordinate of the

configuration space before feeding it into the distance metric δ.

The most natural scaling should be proportional to the importance of each degree of

freedom in moving the geometry of the robot. For the same physical distances, more im-

portant DOFs should have a larger distance than less important DOFs. One measure of the

importance of a joint is by using the swept volume of all the robot links that are dependent

on the DOF as shown in Figure 4.26. Exactly computing the swept volume is a very difficult

problem [Kim et al (2003)], so we use a discretization technique by first discretely sampling

a set of points on the convex decomposition, rotating them around the spans of each of the

joints, using kernel density estimation to get the point density of the volume it spans, and

finally thresholding the density to get a volume. Figure 4.26 shows the volumes generated

using this simple, but powerful technique.

Algorithm 4.10: LineCollisionDetection(q0,q1)

q ← q01

∆q ← q1 	 q02

if q /∈ Cfree then3

return true4

while true do5

q ← q + t∆q s.t. t > 0
∧
δ(q, q + t∆q) = ∆s6

if δ(q0, q1) ≥ δ(q0, q) then7

/* Passed the end, so check the final point */

return q1 /∈ Cfree8

if q /∈ Cfree then9

return true10

end11

return false12

Figure 4.26: The swept volumes of each joint, where the parent joint sweeps the volume of its
children’s joints and its link.

Intuitively, the base joints should have more weight because of their larger impact on the

end effector than joints farther in the chain. We compute the distance metric weights for

the ith joint using:

(4.62) ωi =

(
CrossSection(SVi) ∗

∑
j∈DependentLinksi

LVj

) 1
3

where SVi is the swept volume of the joint axis, and LVj are the individual link volumes.

Using just the area of the cross section is misleading since it measures all possible locations

of the link positions, and does not consider where the links currently are. This could greatly

skew the contribution of each joint, therefore we also multiply by the sum of volumes of all

j0 j1 j2 j3 j4 j5 j6

WAM Volume (m3) 4.346 2.536 0.781 0.395 0.143 0.110 0.043
WAM Cross Section (m2) 0.2668 0.0306 0.0297 0.0035 0.0023 0.0004 0.00039
WAM

∑
LVj (m3) 0.0066 0.0052 0.0050 0.0039 0.00364 0.00361 0.00357

WAM Weights ωi 0.121 0.054 0.053 0.024 0.020 0.012 0.011
Puma Weights ωi 0.133 0.090 0.015 0.006 0.002 0.001 -

Table 4.7: Statistics and final distance metric weights for the Barrett WAM joints.

Figure 4.27: Example scenes used to test the effectiveness of the configuration metric.

links that are dependent on the ith joint. Finally we take the cubed root since we’re dealing

with a weight on a single axis, but using values computed from sums on three dimensions.

Table 4.7 shows the volumes, cross sections, and final weights for each of the joints on the

7DOF WAM and 6DOF Puma robots.

In order to test the effectiveness of the weights, we compute the average time to compute

Uniform Weights Swept Volume Weights (ωi)

WAM scene 2.89s 1.24
Puma Scene 0.71s 0.57s

Table 4.8: Statistics and final distance metric weights for the Barrett WAM joints.

Parameter Name Parameter Description

Collision δ padding for the surfaces of each convex hull
Range Data δ padding for removing colliding range data
Discretization used for approximating the volume of a convex hull for swept volumes

Table 4.9: Convex Decomposition Parameters

a path on two scenes (Figure 4.27) when using both uniform weights and ωi. The distance

metric is weighted euclidean distance with 0 and 2π identified for continuous rotation joints.

For purposes of fair comparison, we keep the planning step size the same for all tests:

∆s = 0.01. Table 4.8 shows that the planning times are 0.5-0.8 times the original planning

times. It should be noted that the ωi weights allows much higher step sizes and therefore

faster times since the max end effector movement given a ∆s = 0.01 is smaller and more

consistent than with uniform weights.

Table 4.9 shows the parameters related to using convex decompositions.

4.7 Object Detectability Extents

One of the major contributions of this thesis is to explicitly consider the detectability extents

of an object during the planning process. The vision algorithm used to detect an object and

camera sensor roughly define all the poses the object could appear in front of the camera

such that its 6D pose can be computed accurately. Assuming that lighting is controlled or

the vision algorithm’s image features are invariant to lighting changes, we can compute the

detection extents of the object by waving the camera or object around the other and building

a map of all extracted object poses. The data gathered is intrinsically 6DOF, so it would

take a very long time to explore the full 6D space of the relative poses between the camera

and object. However, some degrees of freedom are notably less important than others in

determining detectability. Assuming perspective distortions do not play a major role, then

the rotation around the camera axis and translation on the image plane can be freely changed

without affecting the pose detection results. Therefore, we define the projected map down to

3DOF as the detectability extents of the object. Figure 4.28 shows the raw extents gathered

using a simple textured plane object detector. We parameterize the extents with respect to

the distance to the object λ, and the direction of the camera view axis with v.

Using knowledge of the target object CAD model, robot kinematics, and camera cali-

bration, it is possible to completely automate the data-gathering process. Similar to the

Figure 4.28: Camera locations that can successfully extract the object pose are saved.

automated camera calibration technique discussed in Chapter 6, we can attach a camera to

the robot and automatically explore the space around the target object. The poses stored

are independent of any errors from the robot encoders or extrinsic camera calibration, so

no precision is lost if we just care about gathering the extents. However, relative positions

of robot encoders are usually accurate to within 0.0001 radians, so one important piece of

information that can be extracted is the error between the expected change in pose and the

actual change in pose. The change in pose comes from using the initial detection results

T cameraobject (0) and the initial robot link position attaching the camera T robotlink (0) as ground truth.

For any new observation i, the following must hold:

(4.63) δ
(
T robotlink (i)−1T robotlink (0) , T cameraobject (i)−1T cameraobject (0)

)
= 0

where δ is a distance metric on poses. The error can be used to scale the confidence

values of the detection algorithm. Because no vision algorithm is perfect, there is always

a chance it makes a mistake in the detection process or computes an inaccurate pose. We

combine three different measures for quantifying the amount of trustability of the detected

pose.

• The first is the vision algorithm confidence γvision, every algorithm should be able to

return a value on how well its internal template fits the image.

• The second is the neighbor density around the extents map γstability. Computing this is

a little tricky because it is dependent on the underlying pose sampling distribution. If

using a robot, we can control this density, otherwise it is very difficult. Therefore, for

every point we gatherer all the points around a ball of radius r, and compute how well

Figure 4.29: The probability density of the detection extents of several textured objects using a
SIFT-based 2D/3D point correspondence pose detection algorithm.

Parameter Name Parameter Description

Bandwidth the bandwidth of each kernel for generating a probability distribution
Density Threshold the neighbor density threshold for pruning outliers
Discretization Used for sub-sampling the distribution for storing a discrete set of extents
Sampling if using a robot, controls the sampling density of the sphere

Table 4.10: Detectability Extents Parameters

the entire ball is filled. Such an operation is easily achieved using nearest neighbors

pruning and counting (Figure 4.28 middle). A stable region means that the camera or

object can move slightly and still be guaranteed to be detected.

• The third is based on the expected error from Equation 4.63. It is converted into a

confidence by modeling the probability as a gaussian.

The final confidence of a pose is a 3D map computed by:

(4.64) γ = γvision γstability e
−cδ2

We use γ to prioritize sampling of the camera extents covered in Section 5.1. Figure 4.29

shows the detectability extents of several objects using a SIFT image features-based plane

detector. Just like with inverse reachability, we can use the detection extents to help with

the design of industrial bin-picking workspaces. The maximum distance an object can be

detected can be used to optimize the robot location with respect to the bin where target

objects are in.

Table 4.10 shows the parameters related to generating detectability extents.

4.8 Discussion

The planning knowledge-base is an important concept for helping achieve automatic con-

struction of manipulation programs. In this chapter, we divided the knowledge required

beyond the robot and task specifications into seven different categories. Our formulations

in each of these categories rests upon a vast amount of fundamental research proposed by

previous researchers; however, one of the most important contributions here is tying each of

these categories together and really focusing on automated generation of each component.

We presented details and algorithmic descriptions beyond the fundamental theories to help

understand these components in the context of applying them to real robot scenarios.

Computing fast and numerically stable analytical solutions to the inverse kinematics

problem has been a classic problem with many mathematical solutions proposed. However,

treating it as a search problem allows usikfast to explore the entire solution space to find

the quickest and most robust method. Although there exist robot kinematics that ikfast

cannot solve yet, the kinematics of most robots used in the world today can be solved for.

Assuming the existence of analytic inverse kinematics solutions can also help shift the focus

of planning algorithms to use them rather than to assume no knowledge of the problem. We

believe that ikfast will become a standard tool for future robotics research.

Grasping is one of the fundamental distinctions between manipulation planning and mo-

tion planning. In order to reason efficiently about grasps, we motivated a discrete grasp

set approach to modeling the space. We presented three different methods that fall into

this definition, and in each of them showed how to parameterize and discretize the space.

Furthermore, we presented several algorithms to remove grasps that can be prone to slipping.

Considering arm reachability is one effective way of relating the configuration space of

the robot to the workspace. Although the concept of reachability has been around for some

time in the motion planning community, the parameterizations and usages different quite

radically. In this chapter we stuck with the most flexible representation of the reachability

by using 6D maps. We presented several algorithms on efficiently generating, sampling, and

inverting the reachability space. Inverse reachability opens up a lot of possibilities in the

context of base placement planning. From this analysis emerged a new concept called grasp

reachability that allows us to explicitly relate a probability distribution on the robot base

with a target object to be grasped. We believe such analyses will become very important in

automating the design of industrial scenarios.

We argue that convex decompositions are the most efficient way to represent body ge-

ometry. They can accurately model any geometry of the robot, and using them for collision

and proximity detection is very straightforward due to their SAT-nature. We showed how

convex decompositions are used for padding and processing range data. Furthermore, they

allow efficient swept volume computation of the robot links. We presented a distance metric

that computes weights for the joints based on the amount of geometry each joint can affect.

We discussed several real-world issues with using convex decompositions like using them only

for environment collisions and not self-collisions. Our hope is that all these issues convince

every planning library developer to natively support and use convex decompositions.

Explicitly modeling the detectability extents of target objects allows us to methodically

analyze the information space offered by a vision algorithm. We can determine where a

camera should be move in the workspace without relying on a human to second-guess and

teach the robot these heuristics. Furthermore, we presented a confidence measure map that

helps prioritize the sampling of the camera locations. Usage of detectability extents is one of

the pillars and major contributions of this thesis and planning with them will be discussed

in Chapter 5.

Rather than individually treating these components in the planning knowledge-base, we

argue the necessity of the information dependency graph in Figure 4.1. By explicitly keeping

track of the information being used for generation of the model, we can split up real domain

knowledge specified by a person from knowledge that can be auto-generated. It is true that

a some of the generation processes are controlled by thresholds and discretization values.

We offer some insight in how to automatically set these values, but this type of second-order

automation still requires a lot of research. Some database components take a really long time

to generate, so it is inefficient to have to rebuild the entire planning-knowledge base whenever

a small modification is made to the robot or target object. Fortunately, the dependencies

allow keeping track of changes and updating only those components that are affected. In

Section A.1.5, we cover one way of indexing changes. In the future, the dependency graph

can form the basis for a global database of robots and tasks.

We explicitly state the parameters each component uses for its generation in Tables 4.2,

4.3, 4.4, 4.5, 4.6, 4.9, and 4.10. Although we have discussed ways of automatically setting

each of the parameters, their optimal values can depend on the precision requirements of

the task, the repeatability of the robot, and the units the entire environment is defined in.

Because the specifications mentioned in Section 2.1 do not encode such information, the

setting of the values cannot be truly automated. For example, in this thesis, all robots are

defined in meters and are human-sized. Such knowledge would allow us to set the reachability

discretization to 0.04 meters without sacrificing too much imprecision since we can argue that

a robot’s behavior should not change much if the target object moved by 0.04 meters. Future

improvements to the robot and task specifications could define a few paramters that would

allow an automatic analysis of error propagation vs speed of retrieval. Such analyses would

allow a user to tweak the accuracy or responsivity of the system without worrying about the

details.

Chapter 5

Planning with Sensor Visibility

We present a system that introduces an efficient object information gathering stage into

the planning process. Specifically, we concentrate on how cameras attached to the robot

can be used to compute an accurate target object pose before attempting to plan a grasp

for the object. It is common for robot systems to treat grasp planning independent from

the sensing capabilities of the robot, which results in a separation of the perceptive and

planning capabilities that can lead to gross failures during robot execution. For example,

a robot that sees an object from far away should not attempt to plan a complete path

with grasps involved at that point; an early commitment of a global plan when environment

information is inaccurate can lead to failures in the later execution stages. Instead, the robot

should plan to get a better view of the object. Thus, it is important to setup the planning

process to prioritize gathering information for the target object before prematurely wasting

computation committing to a grasp plan.

There are many methods of handling sensor uncertainty in the planning phase depending

on the level of expected noise in the system. For example, really noisy sensors that frequently

return false positives require the planner keep track of object measurements using EKF

filters [McMillen et al (2005)]. Furthermore, planning in dynamic environments requires the

robot to keep track of what regions are stale due to no sensor presence, what regions are

being actively updated, and where the robot is with respect to the map [Rybski and Veloso

(2009)]. The less assumptions made on the quality of sensing data and the predictability of

the environment means that the planning and sensor feedback loops have to be very tight,

which makes the manipulation problem very difficult. By focusing on industrial settings and

mostly static environments as outlined in Chapter 2, we can separate the problems due to

dynamic, unpredictable changes and those of sensor noise and calibration errors. In Section

4.7, we built a detectability extents model that captures the entire sensing process and its

133

Figure 5.1: Comparison of a commonly used grasping framework with the visibility-based frame-
work. Because the grasp selection phase is moved to the visual feedback step, our framework can
take into account a wider variety of errors during execution. The robot platforms used to test this
framework (bottom).

noise models. It encodes a probability directly proportional to the confidence of the detection

process, the noise introduced in it, and the density of neighboring regions. By using just the

detectability extents, we hope to find better and more confident measures of the locations of

objects before attempting to grasp them. Because detectability extents encodes a probability

distribution of where the camera should observe an object from, the planning process can

mostly set aside the direct output of the vision algorithm and only concentrate on sampling

the extents.

We focus on a framework that can effectively use cameras attached to the gripper. Unlike

cameras mounted to the base or the head of the robot, gripper cameras can be maneuvered

into really tight spaces. This allows the robot to view objects in high cupboards, microwaves,

or lower shelves as easily as grasping them. Furthermore, the detection results from the

gripper camera are transferred directly into the gripper coordinate system, which removes

any robot localization or encoder errors from the final pose of the target object.

In Section 5.1, we show how to quickly sample robot configurations using the detectability

extents models such that the object becomes detectable in the camera image. We use these

samplers as a basis for a two-stage visibility planning process shown in Figure 5.1. In Section

5.2, we present experimental results that show performance of this method is as good as

regular grasp planning, even though a second stage was added.

There are two steps to incorporating visibility capabilities:

1. A planning phase that moves the robot manipulator as close as safely possible to the

target object such that the target is easily detectable by the onboard sensors.

2. An execution phase responsible for continuously choosing and validating a grasp for

the target while updating the environment with more accurate information.

In Section 5.3, we present a visual feedback method that integrates grasp selection. This

allows us to naturally fill the gap between the motion planning stage that picks grasps

and the execution stage that attempts to reach those grasps. In most research, the entire

environment with obstacle avoidance is rarely considered because of the computational com-

plexities with gradient descent approaches. It is also hard for gradient descent to consider

nonlinear constraints like properly maintaining sensor visibility and choosing grasps. To

solve these problems, we present a stochastic-gradient descent method of planning that does

not have the singularity problems frequently associated with gradient-descent visual servoing

methods. Although many proposed robot systems include planning and vision components,

these components are treated independently, which prevents the system from reaching its

full potential.

The visual feedback framework is different from past research [Prats et al (2007a); Kim

et al (2009)]. in that it analyzes how the environment and the plan as a whole are affected

during the visual-feedback execution. By combining grasp planning and visual feedback

algorithms, and constantly considering sensor visibility, we can recover from sensor calibra-

tion errors and unexpected changes in the environment as shown in [Diankov et al (2009)].

The framework incorporates information in data-driven way from both planning and vision

modalities during task execution, allowing the models it uses to be automatically computed

from real sensor data.

Case studies of a humanoid robot picking up kitchen objects and an industrial robot

picking up scattered parts in a bin are presented in the context of this theory. We also show

how to sample base placements guaranteeing a visible configuration for mobile manipulation.

5.1 Sampling Visibility Configurations

A visibility robot configuration guarantees that the camera attached to the robot is moved

to a location where the target object is unobstructed and can be detected by the vision

algorithm. The following have to be considered:

Figure 5.2: Object initially hidden from the robot, so its pose is not known with much precision.
It takes the robot three tries before finding it.

• Detectability. The detectability extents map of the object used from the planning

knowledge-base (Section 4.7). The stored map includes the camera direction v to the

object, and the distance from the object λ.

• Reachability. Once a valid camera configuration can be sampled, the robot kinemat-

ics must allow the camera to be placed there.

• Occlusions. The target needs to be inside the camera view and no other obstacles

should be in front of its path.

Although the final goal is to grasp the object, sampling visible configurations should not

be considering grasps.

Before beginning to sample configurations, we assume a rough location of the target

object. In the four-step manipulation process covered in Section 2.4, the first step is a search

phase that detects a very rough locations of all objects of interest. This visibility phase can

be considered as a reconfirmation process of the initial detection. Furthermore, the initial

detection most likely occurs when the robot is far away from the object, therefore the error

on the pose can be huge.

Due to noise on the target object, a sampled camera location does not necessarily guar-

antee the object will be visible once the robot moves there. Figure 5.2 shows a case where

the object pose is initialized with a ±4cm error, so the robot has to sample three different

configurations before finding the object. Fortunately, the confidence values of the target

detectability extents encode the camera neighborhood density, so camera samples can be

organized keeping in mind that the object pose could be inaccurate.

5.1.1 Sampling Valid Camera Poses

The first step is to sample 6D camera poses with respect to the target coordinate system.

The detection extents are first sampled using the confidence map to get the camera direction

v and distance λ. The remaining parameters left for a full pose is the 2D image offset p2D

and the roll θ around the camera axis. If the camera image was infinite in size, then sampling

any offset and in-plane rotation would suffice. The camera rotation R(v, θ) and translation

t(v, θ) in the object coordinate system is defined as:

Robject(v, θ) = Rodrigues

0

0

1

× v, cos−1 vz

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

tobject(v, θ) = −λ R(v, θ)K−1 p2D(5.1)

where K is the 3x3 intrinsic camera matrix assuming a pin-hole camera:

(5.2) K =

fx 0 cx
0 fy cy
0 0 1

The usage of Rodrigues [Belongie and Serge (1999-present)] allows the camera z-axis

to be oriented towards the desired direction v by the minimum angle. In order to convert

the 2D image offset into a 3D translation, p2D is first converted into camera coordinates by

K−1. A multiplication with R(v, θ) converts the point into object coordinates. Finally the

point rests on the z = 1 camera plane, so it is multiplied by the desired distance λ to get

the final offset.

Unfortunately, the image has boundaries, and it is necessary to check that the entire

object lies completely inside the image. Instead of transforming the object into image space,

it is much easier to transform the image boundaries in object space. We start with defining

the camera space boundaries on the z = 1 camera plane:

(5.3) Πx =

 −fx
0

width− cx

 Π−x =

fx0
cx

 Πy =

 0

−fy
height− cy

 Π−y =

 0

fy
cy

where (width, height) are the dimensions of the image. A 3D point p is inside if:

(5.4) ∀iΠip >= 0

Since the planes pass through the origin, the w component of the vectors is 0. Given a

pose of the camera
[
R t

]
, it is possible to transform a plane Π2D into a 3D plane in the

object coordinate system with:

(5.5) Π′ =

[
RΠ2D

−t · Π2D −∆safety

]
where ∆safety pushes the planes forward a small safety margin since the object pose can

be uncertain. The set of 3D planes {Π′} define the camera visibility volume in the object

coordinate frame Vobject as a pyramid originating at t. To keep track of coordinate frames,

for notational convenience, we use

(5.6) Vobject = T objectcamera ∗ Vcamera

Containment testing is just computing dot products. Setting aside environment occlu-

sions, as long as the object is inside Vobject and uses the detectability extents, then all of the

sampled camera poses should yield good views. In order to reduce the search p2D is set to

the center of the image convex hull (width
2
, height

2
).

Gripper Masks

Because the camera is attached to a link on the robot, it could always be looking at a

constant static silhouette of the robot geometry. Figure 5.3 shows two examples of cameras

attached to the gripper links of the robots, with the robot fingers blocking the camera from

observing that part of the environment. It might not always be possible to design sensors

that have a complete unobstructed view; therefore, we go over the computations necessary

to handle these gripper masks as efficiently as possible. Clearly, any visible configuration

should be outside of the gripper mask and inside Vcamera.
Although Section 5.1.2 shows how to handle arbitrary environment occlusions using ray

casting, having a constant mask in the camera image leads itself to a unique reduction in the

equations without any extra computation cost. The idea is to compute the convex polygon

of the largest free space in the camera image that does not contain the gripper mask (blue

regions in Figure 5.3). A valid camera sample has to fully contain the projection of the

object in this convex polygon, which is effectively the same computation as performed with

the camera visibility volume Vcamera. In fact, approximating the region with convex hulls

allows us to define a new visibility volume Vstaticmask and replace Vcamera. We set the new

p2D offset as the center of this new convex hull.

Computing the largest collision-free convex hull is a hard problem [Chew and Kedem

(1993); Borgefors and Strand (2005)], so we use a randomized algorithm that samples sup-

porting points on the boundary of the gripper mask and checks if the resulting convex

Figure 5.3: The real robots with the a close-up simulation of the wrist cameras are shown in the
top two rows. Given the real camera image, the silhouette of the gripper (bottom) is extracted
(black) and sampled (red), then the biggest convex polygon (blue) not intersecting the gripper
mask is computed.

polygon is all inside free space. Depending on the number of supporting points, running this

procedure for an hour should yield a good approximation of the largest volume.

Representing the free space with one convex hull might leave out big chunks of free space

where it is possible for object to be visible in. If this becomes a problem, then representing

it with a convex decomposition should still maintain the computational advantages of the

visibility volumes, except there will be more than one to handle.

The computational efficiency of the mask has one disadvantage which is that if the mask

changes, the convex hull will have to be recomputed. The masks in Figure 5.3 depend on

the preshape of the gripper, and it becomes necessary to always use the same preshape when

performing the visibility testing. If this becomes a problem, caching multiple masks can be

a viable option since the convex hull with N planes requires just 3N numbers. If the DOF

of the gripper or reflected joints are too much, then it is only recommend to cache only the

static unchanging regions of into the mask and leave the rest for the environment occlusion

checking.

Figure 5.4: For every camera location, the object is projected onto the camera image and rays
are uniformly sampled from its convex polygon. If a ray hits an obstacle, the camera sample is
rejected. The current estimate of environment obstacles is used for the occlusion detect. As the
robot gets closer and new obstacles come into view and a better location of the target is estimated,
the visibility process will have to be repeated.

5.1.2 Detecting Occlusions

To check if the environment obstructs the target object when viewed from a specific camera

location, we shoot all rays from the camera toward the object and check if they hit an

obstacle before they hit the object. In the past, this was done by rendering the image and

letting the graphics hardware perform the depth computations [Michel (2008)]. But for

speed and potential parallel processing requirements, we present a method that samples the

projected object surface and checks ray collisions using a standard collision checker (Figure

5.4). Sampling the projected surface allows us to remove any complex geometry and just

consider the region of the object inside the camera; it also allows control of the density of

rays.

Defining the point set of the surface of the objects as O, and a camera pose as T =
[
R t

]
,

the set of all projected points in the camera image is

(5.7) proj(T,O) = {proj(K (R p+ t)) | p ∈ O}.

Then the directions of all the rays originating at the camera origin that should be tested

for collisions are defined by

(5.8) R(T) = K−1 SampleArea(proj(T,O))

where SampleArea uniformly samples the projected area of the object. The density

of sampling is controlled so as not to miss small details, it is set to 20
fx

for all experiments.

The object is fully visible in the camera if all rays hit the object and it is fully inside the

visibility volume O ⊆ Vobject (Figure 5.4). An issue that comes up with frequently in real

robot experiments is that the initial target object can be slightly inside an environment

obstacle like a table. This means that we should threshold the number of obstacle ray hits

as some percentage of the object visible area.

Algorithm 5.1: q ← SampleTriangleArea(v0,v1,v2,ρ,Nallowed)

v1 ← v1 − v0; v2 ← v2 − v01

L2 ← |v2|; n2 ← 1
|v2|v22

proj1 ← |n⊥2 · v1|3

num1 ← bproj1ρ
c4

∆1 ← v1
num1

; ∆2 ← v1−v2
num1

; ∆L ← |n2 · v1|+ |n2 · (v1 − v2)|5

r1 ← v0; r2 ← v0 + v26

for j ∈ [0, num1] do7

num2 ← bL2

ρ
c; r ← r18

∆r ← r2−r1
num2

9

for k ∈ [0, num2] do10

if not TestRay(r) then11

Nallowed ← Nallowed − 112

if Nallowed < 0 then13

return false14

r ← r + ∆r15

end16

r1 ← r1 + ∆1; r2 ← r2 + ∆2; L2 ← L2 + ∆L17

end18

return true19

Unfortunately, uniformly sampling the projected region is dependent on the complexity

of O. In practice, we temporarily substitute the target object with a simpler convex shape

like a box; orientated bounding boxes are especially easy to handle since they only show

at least three of their six faces. In the end, each primitive reduces to a set of triangles

which we sample with a density of ρ. SampleTriangleArea (Algorithm 5.1) shows how a

triangle sampled given the projected triangle points in camera space. Nallowed is the number

of ray hits allowed before an occlusion is declared. We call the final function to test for

occlusions OnObject(r, T objectcamera,O). Its implementation just projects the primitive and

calls SampleTriangleArea repeatedly.

5.1.3 Sampling the Robot Configuration

In this analysis, we assume the camera is attached to the end of an arm that has a 6D inverse

kinematics solver. We discuss ways of relaxing this assumption towards the end. Sample-

Visibility (Algorithm 5.2) shows how a camera location is sampled, robot configuration is

chosen, and all the constraints are checked before accepting it. First we sample the trans-

formation of the camera outlined above using the vision algorithm’s detectability extents

(Section 5.1.1). Then the object is checked if it lies completely inside the camera visibility

volume V . If it does, we sample the robot inverse kinematics solutions of the manipulator

until we find a collision free robot configuration such that no robot link intersects with the

camera visibility volume. For every solution, we set the robot configuration q and check

if any part of the environment or robot is occluding the object using ray casting (Section

5.1.2). The inverse kinematics need to be solved before the environment check since the

robot can block the camera.

Algorithm 5.2: q ← SampleVisibility(O)

while {v, λ} ← SampleDetectionExtents() do1

T objectcamera ← TO

[
R(v, θ) −λ R(v, θ)K−1 p2D

0 1

]
2

if O ⊆ T objectcamera ∗ Vcamera then3

for q ← IK(Tworldobject T
object
camera T

camera
arm) do4

if ∀r∈R(T cameraobject) OnObject(r, T objectcamera,O) then5

return q6

end7

end8

To achieve faster sampling times, we perform the following optimizations:

• SampleDetectionExtents samples without replacement.

• Once we have the camera transform and before checking for an IK solution, we check

collision with just the gripper. Because the gripper preshape is set, all the child link

transforms of the gripper can be determined regardless of the arm joints.

PA-10 WAM

Sample First Solution 0.026s 0.009s
Sample First Solution (many obstacles) 0.538s 0.097s
Planning Time 0.188s 1.215s
Planning Time (many obstacles) 0.905s 1.289s

Table 5.1: Average processing times for the first visibility stage for thousands of simulation trials.

Sampling with Ray Parameterizations

Currently the sampling of camera locations relies on a 6DOF inverse kinematics solver,

which constrains the camera to only lie on the end effectors of arms. However, by treating

the camera viewing direction as a 4DOF ray, we can use the ikfast ray inverse kinematics

solver that only requires 4 joints to freely move around the environment (Section 4.1.6).

Using ray inverse kinematics can relax the camera to be attached to the elbow, where it is

more natural. We would be able to remove the unnecessary 2DOF redundancy set by p2D,

thus decreasing the size of the models and decreasing planning times. It should be noted

that although 2DOF are redundant, they can greatly increase the free space of the camera,

so any decisions to set a camera lower in the arm should be confirmed with simulations.

5.2 Planning with Visibility Goals

In order to plan to the sampled camera regions, we use RRTConnect* with Sample-

Visibility as the goal sampler. This allows all possible goals to be considered while not

demanding their full computation during planner initialization. To compute average run-

ning times, we create 20 scenes with randomly placed obstacles and record the times for each

individual component. Example scenes are shown in Figure 5.7. To test the effectiveness

of the framework, we have three different robots perform reach-and-grasp tasks in complex

environments shown in Figure 5.7:

• The first scenario is a PA-10 arm with a one degree gripper grasping a box.

• The Barrett WAM with the Barrett Hand inside a kitchen environment.

• The HRP3 humanoid robot with a 6 DOF hand inside a kitchen environment.

For the first planning stage, we record the sampling and planning times. The average

time it takes to sample the first good valid inverse kinematics solution that meets all the

visibility constraints is shown in (Table 5.1). Even with the extra visibility constraints, it

Figure 5.5: The two stage visibility planning method is as efficient as the one-stage grasp planning
method because it divides and conquers the free space.

surprisingly takes a short amount of time to sample a goal. Furthermore, we combine the

sampling with a planner and compute the average time it takes to move the robot from

an initial position to a sampled goal. Note that planning times include the time taken for

sampling the goals.

In fact when performing grasp planning by moving first to to a visibility goal before

attempting to grasp the object, total planning times in general are very similar to grasp

planning from the beginning. This phenomena occurs because the visibility goals can act as

a keyhole configuration by first getting the camera, and consequently gripper, very close to

the target object. Figure 5.5 shows how the search spaces compare when using a one-shot

method vs the divide-and-conquer method with sampling the visibility space. Because the

required precision of robot execution is greatly reduced for the first stage to a visibility goal,

planning becomes ridiculously easy and fast. Only obstacles need to be avoided and the final

gripper position is usually no where near an obstacle. Once at a visibility configuration, the

gripper is already so close to the object, that it becomes possible to start visual servoing

to the final grasp without considering a planner. The next section shows results when the

second stage is replaced by a stochastic gradient descent method rather than a full search-

based planning algorithm.

Figure 5.6: When initially detecting objects, the robot could have a wrong measurements. If it
fixes the grasp at the time of the wrong measurement, then when it gets close to the object, the
grasp could be infeasible. This shows the necessity to perform grasp selection in the visual feedback
phase.

5.3 Integrating Grasp Selection and Visual Feedback

One necessary component for robust behavior in quickly changing scenes is a real-time visual-

feedback phase that can compensate for environment uncertainties. The purpose of visual

feedback is to update the virtual world quickly and to decide if the current plan is still

valid or needs to be re-planned. Much work has been done in combining position-based

feedback, impedance control, and other linear constraints. In the standard visual servoing

formulation, the robot goal is defined with respect to a task frame; as new information comes

in, the task frame is updated and the robot attempts to get closer to the goal defined in this

frame using gradient descent techniques [Prats et al (2007a); Kim et al (2009); Kragic et al

(2001)]. Having one goal fixed to the task frame and adding potential-fields for obstacles

allows gradient-based methods to work really well in simple scenes.

In order to motivate the necessity for grasp selection in the visual feedback phase, consider

the example in Figure 5.6 of the Barrett Hand attempting to grasp one of two objects in a

scene with a camera attached to its gripper. When the robot first starts the manipulation

planning phase, it is far away and computes that the objects are 20mm apart and decides

that it can safely put one of its fingers between the objects. As the robot switches to its

visual-feedback loop and starts getting better measurements of the objects, it updates their

poses and sees they are actually 5mm apart. This sudden change in distance now prevents

the robot to put its fingers safely between the two objects. This requires the robot to choose

a new grasp quickly to compensate for the change, or otherwise it will declare failure.

Recently, a framework for combining randomized planners and visual servoing techniques

has been proposed by [Kazemi et al (2009)]; it maintains constraints using a planner and

locally modifies this trajectory in real-time using visual servoing. This allows relaxing of the

Algorithm 5.3: path ← VisualFeedbackWithGrasps(qstart, Graw)

G← Sort(using δgripper(FKgripper(qstart), Graw))1

γ ← 2.52

while G 6= ∅ do3

for g ∈ G do4

qgoal = arg minq∈IKSolutions(g) δ(q, qstart)5

if δ(qgoal, qstart) < γ then6

path← RandomDescent(qstart,qgoal)7

if path 6= ∅ then8

return path9

else10

G← G− {g}11

end12

end13

γ ← 1.5 γ14

end15

return ∅16

constraints on the environment obstacles, but the reality is that the goal is not just one fixed

pose with respect to the task frame, it is all possible grasps that can manipulate the object.

If the feedback stage does not consider the grasp selection process during visual feedback,

it cannot quickly compensate for changes in environment and will have to restart the entire

planning process from the start. In fact, we stress the importance of performing grasp

selection for the target during visual-feedback execution because more precise information

about the target’s location and its surroundings is available (Figure 5.1).

5.3.1 Stochastic-Gradient Descent

The grasp selection process in the gradient descent algorithm should take into account both

the collision obstacles and the current robot position. Although many grasps could be

collision-free and reachable from the robot’s perspective, the selection process is more suc-

cessful when they are prioritized depending on the current environment. We use two metrics

to prioritize grasps. The first is the difference between rotations of the gripper used to

represent the grasp space:

(5.9) δgripper(T0, T1) = cos−1 |ExtractQuaternion(T0) ·ExtractQuaternion(T1)|

where the cos−1 is the Haar measure on SO(3). Each grasp is checked for the existence

of a collision-free inverse kinematics solution. The second metric for prioritizing grasps is

the distance between the solution and the current robot configuration.

VisualFeedbackWithGrasps (Algorithm 5.3) shows how the grasps are ordered using

these two metrics before calling the stochastic gradient descent algorithm. Graw is the set of

all possible, validated grasps using GraspValidator (Algorithm 3.4), γ forces the closest

configuration solutions to be considered first before the farthest ones, δ(q, q) is the distance

metric on the configuration space of the robot used for choosing closer inverse kinematics

solutions.

It is also possible to maintain the visibility of the target while computing a path. We

define Cvisible as the space of all collision-free robot configurations in Cfree that maintain the

visibility constraints with the object:

Cvisible = { q | q ∈ Cfree,
O ∈ T objectcamera ∗ Vcamera,
∀r∈R(FKcamera

object (q))OnObject(r, q,O) }(5.10)

RandomDescent (Algorithm 5.4) shows the visual feedback algorithm. Given a grasp

transform, we first find the closest inverse kinematics solution in configuration space and

set that as the goal. Then we greedily move closer to the goal and validate with Cvisible.
SampleNeighorhood returns a sample in a ball around q. After the grasp frame Tg gets

within a certain distance τ from the goal grasp, we start validating with Cfree instead since

it could be impossible for the object to be fully observable at close distances. Because the

gripper is already very close to the object and the object is not blocked by any obstacles

due to the visibility constraints, such a simple greedy method is sufficient for our scenario.

Another advantage of greedily descending is that an incomplete plan can be immediately

returned for robot execution when planning takes longer than expected.

It should be noted that it is not always possible to maintain the visibility constraints. In

fact when the current configuration is close to qgoal, it is not important to sense the target

anymore. Furthermore, if the gripper pose is very far away from the grasp current chosen,

then we can also relax the visibility constraint. It is very common for the robot to get stuck

moving in one direction due to joint limits, so it has to completely reverse directions to get

into the correct reachability region. Relaxing the constraints on Cvisible allows this to happen.

Algorithm 5.4: path ← RandomDescent(qstart, qgoal)

path ← {qstart}1

q ← qstart2

for i = 1 to N do3

qbest ←∞4

for i = 1 to M do5

q′ ← SampleNeighborhood(q)6

if q′ ∈ Cfree and δ(q′, qgoal) < δ(qbest, qgoal) then7

if δgripper(FKgripper(qgoal), FKgripper(q
′)) > τ or q′ ∈ Cvisible then8

qbest ← q′9

end10

if qbest 6=∞ then11

path.add(qbest)12

q ← qbest13

if δ(qbest, qgoal) < ε then14

return path15

end16

return ∅17

Using the same scenes as in Figure 5.7, we record average time to complete a visual

feedback plan while maintaining visibility constraints (Table 5.2). In order to compute the

how much visibility constraints affect the times, we also record statistics for the feedback

stage ignoring the camera. Although the times vary greatly depending on the situation,

results show that the feedback algorithm can execute at 2-10Hz. Looking at the planning

times, scenes with more obstacles usually finish faster than scenes with fewer obstacles. This

phenomena is most likely because obstacles constraining the feasible configuration space of

the robot and guide it toward the goal faster.

Just like all feedback algorithms, VisualFeedbackWithGrasps is constantly running

and re-validating the scene. When it returns, start executing the path and run it again

assuming that the robot will switch to the new trajectory in ∆t s in the future. The path

to the object is always validated and can sometimes stop the robot [Ferguson and Stentz

(2006)].

As discussed in Section, 5.2, the combined planning times for the first planning stage

and the second visual feedback stage are comparable to the planning times of previous

manipulation systems that do not even consider visibility [Berenson et al (2007); Diankov

Figure 5.7: The scenes tested with the visibility framework. The images show the robots at a
configuration such that the visibility constraints are satisfied.

PA-10 WAM

Few obstacles/Visibility Constraints 0.626s (93%) 1.586s (96%)
Many obstacles/Visibility Constraints 0.512s (83%) 0.773s (67%)
Few obstacles/No Visibility 0.117s (94%) 0.406s (97%)
Many obstacles/No Visibility 0.098s (86%) 0.201s (71%)

Table 5.2: Average planning times (with success rates) of the visual feedback stage.

et al (2008a); Srinivasa et al (2008)]. The second visual feedback stage does not have to

consider complex planning scenarios since the target is right in front of the camera, this

allows it to finish quickly.

5.4 Humanoid Experiments

Using the concepts from grasp planning, visibility, and reachability, we show how to perform

simple pick-and-place tasks with a dual-arm humanoid robot. We attached a camera to the

to right gripper (Figure 4.12) and trained the detectability extents of five different objects.

Figure 5.11 shows the environment where a flash LIDAR is placed on the top right corner

Figure 5.8: The calibration error from the head camera can be very inaccurate when detecting
over large distances.

in order to provide real-time measurements of obstacles in the environment. As discussed

in Section 4.6.2, we remove the robot and detected target object from the range data before

attempting to avoid it. The two intrinsic parameters on both cameras are accurately cali-

brated; however, the extrinsic calibration were not set accurately for both in order to test

the robustness of the system against calibration errors. Because the head cameras have a

big focal length, far away objects are easy to see, which also implies bigger pose detection

errors. Figure 5.8 shows that we can get up to 4cm error when detecting the pose of an

object with the head cameras. The sink was chosen because it is very difficult to see all

places of the sink with the head cameras, while the gripper camera has complete freedom.

The sink spatial location also really stresses the reachability space of the robot. Without

informative base placement sampling (Section 3.6.1), it becomes very difficult to be able to

grasp the object. We set four different arm definitions: 7DOF left arm, 7DOF left arm +

1 DOF torso, 7DOF right arm, 7DOF right arm + 1 DOF torso. The robot actually has 2

torso joints, but it is inefficient to have a 9DOF inverse kinematics solver. Therefore, inverse

reachability models are precomputed for the remaining over torso joint using these values:

{−π
4
, π, π

4
}. The planner considers all 4 arms along with all 12 inverse reachability models.

The goal for the robot is to pick up objects from the sink and place them on the counter

to the right of the image. First, the robot searches for objects using the head camera by

moving around the environment. Assuming the base is fixed for now, the robot first samples

a visible configuration. For really small reachability spaces and a really robust algorithm,

the volume of the possible camera configurations can be immense, but the reachable camera

configurations is only a percentage of that, so SampleVisibility will spend a lot of time

rejecting samples. In order to restrict sampling to reachable regions, we intersect the reach-

Figure 5.9: Can efficiently prune out all the visibility candidates before sampling by using reach-
ability.

ability spaces and camera visibility poses as shown in Figure 5.9. If all the data is cached

in kd-trees, the intersection operation is on the order of a few milliseconds, therefore a lot

of time is saved. Once the robot moves to a visible configuration, it recomputes the target

pose and starts grasp planning. Figure 5.10 shows the sequence of moves made. The grasp

plan always moves the gripper to a retreated grasp along the grasp direction, this allows for

padding object boundaries so robot does not hit it on its way there (Section A.3.1). The

robot then moves along the grasp direction, grasps the target, and moves it to its desti-

nation. Figure 5.11 shows several real-world experiments on similar scenes, but different

objects. After all the components were put together and padding was used for avoiding edge

collisions, the robot could succeed in grasping the objects 9 out of 10 times. All failures were

due to slipping of the gripper fingers while grabbing the object. There are two explanations

for this:

• There could be imperfections in modeling of the gripper geometry and thus getting a

bad grasp in the real world, while it is stable in simulation. The gripper fingers were

custom made, and no CAD model was readily available for them, therefore they were

measured by hand. All fragile grasps were pruned using the repeatability metric in

Section 4.2.1 with a noise of 0.01m. Manually checking every grasp in the grasp set

confirms that no fragile grasps were present.

• The pose of the object was a little off due to the vision algorithm. As we previously

Figure 5.10: The full process of mobile manipulation using visibility, reachability, and base
placement models.

mentioned, none of the camera positions were accurately calibrated because we wanted

to test the power of the gripper cameras. The fact that most of the grasps succeeded

is because the gripper camera usually detected objects from 0.1m-0.2m, which reduces

the calibration error to a few millimeters.

We also performed mobile manipulation experiments as shown in Figure 5.12. Once

the object is visible, the robot starts sampling base placements such that it can achieve a

visibility configuration. The robot then moves to this configuration and continues sampling

visibility configurations until it finds the object. Just considering visibility can lead to the

situation in Figure 5.13 where the robot cannot grasp the object from that location, which

would require the robot base to move again to grasp it. For wheeled bases on a carpet,

using a laser range finder with a SLAM-built map, the navigation process accuracy is on

the order of 2cm-4cm, which means that the object always has to be recomputed by the

camera when the base stops moving. Going back to the original problem of sampling a base

placements that allow grasps and visibility configurations, it is important to keep in mind

that the object’s pose is not known accurately. As a result, full collision detection during

grasp validation cannot be done. However, the reachability of the grasp ignoring collisions

Figure 5.11: Manipulation with dynamic obstacles from range data (red boxes) using visibility
configurations.

Figure 5.12: The full process of mobile manipulation using visibility, reachability, and base
placement models. In order for the robot to grasp the object, it has to move to the other side. But
at the other side, the only way to see object is with its wrist camera.

Figure 5.13: When sampling base placements with visibility, the reachability of grasp sets also
have to be considered, otherwise the robot will need to move again before it can grasp the object.

can still be considered. Using the reachability multiplication trick in Figure 5.9, we can start

sampling base placements the prioritize visibility, but also consider the grasp set. Of the few

experiments performed with mobile manipulation, all them succeeded in grasping the object

on the first time.

Figure 5.14: Industrial bin-picking scene has a ceiling camera looking at a bin of parts and a
gripper camera.

5.5 Industrial Bin-Picking Experiments

One of the most applicable areas of this work is bin-picking of industrial parts scattered

in a bin. Pick-up accuracy has to be high because a robot is commonly needs to fit the

part into a designated region for assembly into bigger devices. We test this framework in

simulation for the two-camera system shown in Figure 5.14. There is a ceiling camera that

looks directly into the bin and a gripper camera attached with a pole used inserting into the

holes of the parts. One of the unique characteristics of the bin-picking problem is that the

robot does not know the entire state of the bin, it only knows the target objects the ceiling

camera managed to detect. Given that the ceiling camera can be 2 meters from the parts,

the depth of the detected parts could be very uncertain. The uncertainty is reflected in the

detectability extents of the part by confirming that the part can still be detected across a

Figure 5.15: Collision obstacles around target part need to be created for modeling unknown
regions because the robot does not have the full state of the world.

Figure 5.16: Grasp Planning is tested by simulating the unknown regions.

cylinder pointing towards the ceiling camera.

In order to plan in a scene where the immediate surroundings of the target object are

unknown, we have to gather a model of the likely distribution of obstacles around a part.

Fortunately, we have the CAD model of the part, so we can use physics to simulate parts

scattered in a bin (Figure 5.14). By collecting statistics on how the parts are scattered, we can

compute statistics on the obstacles around the parts. We parameterize the obstacles by the

expected empty space around the part. Figure 5.15 shows an example when the empty region

is parameterized by a box: which is the height and spread offsets from the part location. Once

a part is detected, the robot creates the obstacles and starts sampling visibility configurations

and planning grasps (Figure 5.15 right). We performed experiments in simulation using a

variety of parts as shown in Figure 5.16. Each part had a particular region where the

manipulator needed to insert itself. The detectability extents are tuned for prioritizing flat

surfaces with many features. Using these grasps and detectability extents, The robot is able

to pick up all parts from a bin and place them in their respective destinations. Once a

part on the top is chosen, it takes on the order of seconds for the robot to find a visibility

configuration and a feasible grasp.

By using simulation, we can guarantee that the geometric complexities of a task are

solvable with the particular environment setup. We can use statistics to build up predictive

models of the arrangements of other parts so that we can make more informed decisions

about the obstacles the robot cannot model. Such information is invaluable for automatic

design of industrial workspaces.

5.6 Discussion

In this chapter we introduced a planning framework based on the visibility of the target ob-

jects. We showed how to efficiently apply the object’s detection extents to sample visibility

configurations that allow the robot to accurately recompute a target’s pose. By explicitly

considering the visible regions of objects, we can compute an upper-bound on the object

pose error, and therefore greatly reduce the uncertainty the grasping module has to deal

with. Furthermore, planning results suggest that inserting visibility configurations into the

planning loop does not increase computation times by much. This discovery suggestions that

the visibility configuration space acts as a keyhole configuration by divide and conquering

the free space of the robot. The visibility sampler we presented relies on the data-driven de-

tectability extents of the target object and vision algorithm pair. Using it allows us to sample

camera locations that are guaranteed to observe the object, even under pose uncertainties

as large as 4cm. Instead of relying on parallel computation and exotic hardware to speed

up the process, the sampler carefully arranges the criteria that must be tested and uses ray

testing as much as possible.

Once a visible configuration has been reached, we resume grasping either using the grasp

planning pipeline or a visual feedback approach. In order to make visual feedback robust to

large changes in the object pose as error is reduced, we presented an extension to a stochastic

gradient descent algorithm that can reason about grasps while approaching the object. The

gradient descent method is fast enough to be used as a visual feedback algorithm in case the

scene is prone to frequent changes.

Throughout the entire chapter, we have discussed the advantages and usage of cameras

attached to the gripper of the robot. An interesting analogy can be made to human ma-

nipulation to prove the necessity of sensors attached to a gripper. In human manipulation,

eyesight serves to provide context and a rough perception of the scene, objects, and their

locations. However, the final steps in grabbing objects by humans mostly rely on tactile

sensors from the hands rather than eyesight. A human can manipulate as dexterously in the

dark as in light; but as soon as the sense of touch goes away, the manipulation strategies are

significantly slowed down. Unfortunately, tactile sensing for robots is still far from becoming

a mainstream commodity used in research labs. That tactile sensors need contact with the

environment to make measurements, which makes then prone to wear-and-tear damage and

not feasible for industrial scenarios. Until tactile sensors become reliable and cheap, we argue

that gripper cameras will remain for a long time the best and most affordable alternative to

completing a fast loop with the target object.

A gripper camera configuration can provide enormously accurate information because the

camera/gripper can fit into tight spaces that base- or head-mounted cameras cannot observe.

Furthermore, if the camera is attached to the same frame of reference that all grasps are

defined in, we can greatly eliminate any kinematic errors due to absolute joint encoder

errors. We showed results of a humanoid robot using a gripper camera to manipulation

objects inside a sink, which has low-visibility. Even though the humanoid cameras were

not accurately calibrated, it allowed the robot to consistently pick up objects without much

failures. This suggests that visibility algorithms can reduce the required calibration on

robots. This idea is especially applicable in industrial scenarios where robots perform their

tasks without stopping for long periods of time. By relaxing the number of times calibration

needs to be done, we can assure that robots can be operational longer without maintenance.

Chapter 6

Automated Camera Calibration

One important problem in autonomous manipulation is synchronizing the robot’s internal

representation of the world with the real world by calibrating its sensors. Calibration is

the problem of computing the correct sensor models and so information can be aggregated

into an accurate world representation. In this chapter we present an extension to the ma-

nipulation framework presented in this thesis that allow us to automate the intrinsic and

extrinsic camera calibration processes. Complete automation implies that the system has to

measure the quality of the calibration results, which requires finding the correct error mea-

surements. We present initial results at the end of this chapter focusing on the validation

and measurement of the calibration results.

The calibration quality encodes the quality of the sensor, the quality of the estimated

acquisition model, and the quality of the sensor’s localization within the environment. The

former is dependent on the manufacturing process and design of the sensor. The latter two

qualities representing the intrinsic and extrinsic sensor models estimate geometrical parame-

ters about the sensor. In this section, we examine the problem of calibrating the intrinsic and

extrinsic parameters of a camera in context of having a robot in the environment. A plethora

of algorithms have been presented for intrinsic camera calibration [Hartley and Zisserman

(2000); Datta et al (2009)] both involving known patterns whose measuring properties are

stable, and algorithms that directly use natural features of the image without requiring

users to engineer their environment. In particular, recent advances in [Datta et al (2009)]

have showed how to maintain numerical stability even if the number of training images have

increased to a point where image noise starts to become a huge factor.

Although many software packages like OpenCV [Bradski and Kaehler (2008)] and the

Camera Calibration Toolbox [Bouguet (2002)] have succeeded in automating intrinsic camera

calibration, truly automatic extrinsic camera calibration with respect to a robot frame of

159

reference tends to be ignored; there are no known reliable calibration packages that solve

the automation complexities necessary for it. Although many formulations for extrinsic

calibration exist, its data gathering phase usually requires a user to hold a pattern in several

locations in front of the camera, along with providing a set of measurements revealing the

relationship between the camera frame and pattern frame of reference. Because a user is

responsible for providing the data in previously proposed systems, the system just has to

worry about finding the most likely extrinsic model that fits the data, it does not concern

itself with scoring the data itself. It is the data gathering phase that makes camera calibration

painful for users; therefore, such systems are not truly automated.

6.1 Problem Statement

An ideal automated calibration system should be able to use the robot and task specifi-

cations discussed in Section 2.1.2 to calibrate itself without any human intervention. The

goal is a one-click calibration system that works for any environment the robot is in.

Industrial robots have to be re-calibrated all the time, and placing special restrictions on

the environment for calibration can make it a time-consuming processes that impacts the

cost of the produced item. Therefore, the ideal calibration process should not require the

environment to be restructured before starting the process.

Building up on previous results in camera calibration, we primarily focus on extrinsic

camera calibration and automating the data gathering process. Because a robot is present

in the scene, it can provide a way to move the pattern with respect to the camera frame of

reference, or vice versa. The system should quickly gather an informed set of measurements

of the pattern that allow an accurate computation of the camera intrinsic parameters and its

location on the robot. Because training data is gathered automatically, we need a confidence

measure on how well it can constrain all the parameters of the process. We show how the

previous approaches to evaluating the confidence of calibration results really do not hold any

information about evaluating the data.

We state the assumptions under which the presented system works in:

• The CAD model and kinematics of the robot are known.

• The robot kinematics and joint encoders are calibrated.

• For added safety, the robot should know the obstacles in its workspace.

• A known calibration pattern is used, and its detectability extents have been measured

(Section 4.7).

• An initial estimate of the camera location and the robot link it is attached to. The

estimate can be directly estimated from the CAD model.

• The initial condition is that the calibration pattern be visible inside the camera image.

The pattern itself could be placed anywhere.

The unknowns that have to be solved through the calibration process are:

• The intrinsic camera parameters are unknown.

• Calibration pattern position is unknown.

We make no restrictions on the frame of reference the camera is placed in as long as an

inverse kinematics solver exists to go from workspace to configuration space. In order to

show the generalizability of the methods, we analyze two scenarios:

• Calibrating a gripper camera. The goal is to compute the relative camera transfor-

mation with respect to the link the camera is attached to. The pattern is stationary in

the environment. An inverse kinematics solver of the link to the robot base is required.

• Calibrating an environment camera. The goal is to compute the relative camera

transformation with respect to the robot base. The pattern is firmly attached to or

grasped by a robot link, which needs an inverse kinematics solver.

Compared to other systems, one new feature of this system is usage of the visibility

samplers covered in Section 5.1 to determine the best views of the pattern with respect to

the camera coordinate system. It allows us to compute safe configurations for the robot to

move to get the desired measurements. It should be noted that this does not necessarily

guarantee the pattern will be visible in all sampled views due to the unknowns in the system

and the progressive nature they will be computed in. The system should continue gathering

data until the calibration estimates are robust enough.

6.2 Problem Formulation

We begin by defining all the frames used in the calibration process as shown in Figure 6.1:

• T linkcamera - the relative transformation between the camera sensor and the robot link.

We denote the initial estimate from the CAD model by T̃ linkcamera.

• Tworldpattern - the transformation of the pattern in the world coordinate system. This is

unknown.

• Tworldlink (q) - the transformation of the link the camera sensor is attached to with respect

to the world coordinate system. q is the configuration of the robot.

Figure 6.1: Frames used in hand-eye camera calibration.

• T camerapattern - the transformation of the pattern in the camera coordinate system.

The following relationship holds between these frames:

(6.1) Tworldlink T linkcameraT
camera
pattern = Tworldpattern

For each measurement i, we compute a new robot transformation Tworldlink (qi) and pattern

transformation T camerapattern (i). A pattern consists of a set of N 3D points {Xj} in its coordinate

system. An image processing algorithm measures the same feature points in the image and

corresponds them with the pattern’s feature points, which produces a 2D array of image

point correspondences {x̄ij} for the ith measurement. We define a function xij = fK(x̄ij) that

transforms an image point to the z = 1 plane in the camera space. In practice, we use a

nonlinear optimization over the reprojection error as defined in [Bradski and Kaehler (2008);

Hartley and Zisserman (2000)].

Combining all information produces the following relation:

(6.2) ∀i ei(ω) = proj((T linkcamera)
−1(Tworldlink (qi))

−1TworldpatternXj)− fK(x̄ij) = 0

where ω is a parameterization of the calibration parameters. The goal is to produce the

best set of robot positions Tworldlink (i) such that the equations built up from these constraints are

not degenerate and can compute the correct solution with high confidence. The calibration is

performed in two steps: first compute the intrinsic parameters using conventional techniques

for function fK , then use the Levenberg-Marquardt algorithm to optimize for the reprojection

error
∑

i |ei(ω)|2 for these 12 degrees of freedom: (T linkcamera)
−1 and Tworldpattern. In order to compute

more meaningful gradients, it is common practice to represent rotations with the angle-axis

parameterization.

We stress the difference between the minimization error function due to calibration pa-

rameters and image noise, and the errors that are due to degeneracies of selecting a bad set

of images to calibrate from. Not concerning ourselves with time, we can assume a global

minimum solver of the error function. Furthermore, image noise is a quantity intrinsic to

the sensor and cannot be directly eliminated. Given these considerations, the only variable

we have control over with the robot is the data views. Surprisingly, view selection has not

been studied as much in the literature, most probably because a person is usually responsible

for picking the best set of views. Because using a robot to automatically search for views

does not have the same guarantees, we go over several parameterizations of the calibration

equations in Section 6.4 that can be used for computing a confidence for the data.

6.3 Process Outline

We start with describing gripper camera calibration process. Figure 6.2 shows the general

outline of the automated data gathering. The user is required to place the calibration

pattern in front of the camera. At this step there are no estimated intrinsic parameters of

the camera, therefore we cannot compute any geometrically meaningful relationships between

the pattern and camera. However, using the fact that the pattern is clearly visible in the

first measurement, we parameterize the camera locations. Assuming the pattern is visible

in the camera, a small set of neighboring robot configurations that allow the pattern to

be viewed from several different orientations are computed using a cone stretching in the

negative z-direction of the current camera pose (Figure 6.2 Step 1):

p ∈ {

pxpy
pz

 ∈ R3 | cos
−pz√

p2
x + p2

y + p2
z

≤ θcone, pz > Lmaxdist}

d ∈ {

dxdy
dz

 ∈ S2 | cos dz ≤ θdir, d2
x + d2

y + d2
z = 1}

(6.3)

where θcone defines the half-angle of the cone, Lmaxdist is the maximum length of the cone,

θdir is the maximum angle the camera direction can deviate. The positions and directions

are uniformly sampled on R3 and S2 (Section 4.3.1). For every position and direction pair,

Figure 6.2: Describes the automated process for calibration. Assuming the pattern is initially
visible in the camera image, the robot first gathers a small initial set of images inside a cone around
the camera (green) to estimate the pattern’s location. Then the robot uses visibility to gather a
bigger set training images used in the final optimization process.

checkerboard grid fx fx fixed principal standard deviation ratio

9x8 2076± 197 1992± 152 1.296
8x7 2056± 23 2080± 17 1.353
7x6 2093± 19 2085± 16 1.188
6x5 2094± 51 2116± 23 2.217
5x4 2073± 33 2082± 22 1.500
4x3 2064± 118 2053± 31 3.806

Table 6.1: Initial intrinsic calibration statics showing the mean and standard deviation of calibra-
tion results using 5 images. Note how the standard deviation is much smaller when the principal
is fixed to the center of the image.

we find the desired pattern transformation with respect to the original camera coordinate

system:

(6.4) Tcamera(p, d) =

Rodrigues
 dy
−dx

0

 , tan−1

√
d2x+d2y
dz

 p

0 1

 .
Using Equation 6.4, we can build up the camera samples Tpatterns and solve for the initial

intrinsic parameters of the camera. Once 5 − 8 images are gathered, the focal length and

radial distortion of the camera are estimated while setting the principal point to the center

of the image. The reason for this reduction in parameters is because the initial set of images

are not enough to create strong constraints for all parameters. In practice, we estimate with

the principal point, the focal length can be an order of magnitude off from the real length,

this makes the later processes impossible to converge. Table 6.1 shows a comparison with

fixing the principal point when calibrating the gripper camera as shown in Figure 6.2. As can

be clearly seen, the standard deviation on the error is much lower when the principal point

is fixed, so the results can be trusted more. Using the initial intrinsic calibration and the

rough initial guess of the camera location, we can estimate the world pattern, this allows us

to start the visibility-based data gathering that can assure we capture a good set of images

that constraint all parameters well.

Ideally, we want to work with an ordered set of poses Tpatterns that represent a progressive

sampling of views for the camera such that the first N views of the set represent the best

N views. We define best views in terms of how well the data can constrain the calibration

Figure 6.3: The detectability extents of the checkerboard pattern (show in black).

parameters in the optimization process. It has been shown views differing by a roll around the

camera axis or distance from the object do not contribute many new constraints. The most

interesting constraints come from out-of-plane rotations in S2, with the next most interesting

being large offsets in R2 on the camera plane that help in measuring radial distortion.

Therefore, we can progressively sample S2 ⊗ R2 to get the ordered set. Furthermore, we

want some guarantees that the camera can actually detect the calibration pattern at the

sampled locations. Therefore, we build up detectability extents of the pattern (Figure 6.3)

and intersect it with the samples on S2 ⊗ R2. The extents provide the maximum angle

of incidence to the calibration pattern plane and minimum and maximum distance from

pattern. Because the robot is going through a calibration phase and does not have an

accurate position of the pattern or the camera, views on the edge of the detectability extents

have a very high probability of being missed; therefore, positions in the most densest regions

should be prioritized first. It is possible to force such an ordering on S2 according to [Gorski

et al (2005)]. Even with taking into account position uncertainty errors and detectability, a

particular view might be blocked by the environment, so the actual sampling process requires

an algorithm to keep track of what is detected and another algorithm to determine when the

data gathering process should terminate.

The basic outline of data gathering is presented in GatherCalibrationData (Algo-

rithm 6.1) where the input is a set of possible desired pattern views Tpatterns in the camera

space. For every pattern, Tp ∈ Tpatterns, the world camera position is Tworldlink (qcur) T̃
link
camera Tp

where qcur is the current configuration of the robot. Because the inverse kinematics equa-

tions work with the desired manipulator link, we right-multiply the camera transformations

by (T̃ linkcamera)
−1 to convert to the link space. After all the desired robot link transformations

are computed in Tlinks, we start sampling from the set and taking measurements. In ev-

Algorithm 6.1: CalibrationSamples← GatherCalibrationData(Tpatterns)
CalibrationSamples← ∅1

Tlinks ←
{
Tworldlink (qcur) T̃

link
camera Tp (T̃ linkcamera)

−1 | Tp ∈ Tpatterns
}

2

while Tlinks 6= ∅ do3

T̄worldlink ← NextBestView(Tlinks)4

qtarget ← IK(T̄worldlink)5

if qtarget 6= ∅ then6

if PlanToConfiguration(qtarget) then7

if IsPatternDetected() then8

CalibrationSamples← CalibrationSamples+
{
Tworldlink (qcur), {x̄ij}

}
9

/* Prune similar transformations */

Tlinks ← {T ∈ Tlinks | δ(T, Tworldlink (qcur)) > τ}10

if CheckCalibrationValidity(CalibrationSamples) then11

return CalibrationSamples12

else13

continue14

Tlinks ← Tlinks − {T̄worldlink }15

end16

return ∅17

ery iteration, the next best view T̄worldlink is chosen and inverse kinematics are applied with

collision-checking to yield a target configuration qtarget. The robot attempts to plan a path

and move to qtarget. If successful and the pattern is detected at that configuration, then

all similar views from Tlinks are removed and the robot position Tworldlink (qcur) and the pattern

feature points {x̄ij} are stored. Note that the pattern transformation T camerapattern is not needed to

compute the reprojection error as defined in Equation 6.2, so is not stored. If any step fails,

then only the currently tested link T̄worldlink is removed from Tlinks. This process is continued

until the validation function CheckCalibrationValidity decides the data is enough. If

all samples are tested before valid data is found then the function fails.

Using the initial intrinsic parameters, the initial estimate of the world transformation of

the pattern is given by

(6.5) T̃worldpattern = (Tworldlink T̃ linkcamera)
−1T camerapattern

where T camerapattern can be easily solved using classic 2D/3D point correspondence techniques

[Hartley and Zisserman (2000); David et al (2004)]. Once we have an initial estimate of the

Figure 6.4: Several configurations of the robot moving to a visible pattern location.

pattern in the world (Figure 6.2 right), we use the visibility theory developed in Section 5.1

to sample a feasible and informed set of camera transformations around the pattern using

Equation 5.1. Figure 6.4 shows several examples of the robot using the visibility regions of

a checkerboard pattern to calibrate itself. In order to evaluate results, we intersect all the

rays from the image points together to find the 3D world point agreeing with all images:

∀ixij = proj(RiX̃j + ti)

⇒ ∀i(P i
2 · X̃j + ti2)xij,0 = P i

0 · X̃j + ti0, (P i
2 · X̃j + ti2)xij,1 = P i

1 · X̃j + ti1

⇒ (P i
2x

i
j,0 − P i

0) · X̃j + ti2x
i
j,0 − ti0 = 0, (P i

2x
i
j,1 − P i

1) · X̃j + ti2x
i
j,1 − ti1 = 0

where the projection matrix

[
Ri ti

0 1

]
= (Tworldlink T linkcamera)

−1. Because Tworldpattern is also com-

puted from the optimization process, we compute the 3D error by

(6.6)
1

N

∑
j

|TworldpatternXj − X̃j|

Table 6.2 shows the reprojection and 3D errors associated with calibrating the gripper

camera using several checkerboard patterns. The reprojection errors are usually an order

of magnitude larger than the intrinsic errors because we are constraining to only one world

pattern whose transformation is determined through the robot’s kinematics. The added error

between the robot and the reduction of the degrees of freedom contribute to large reprojection

errors, which is also a sign that intrinsic error is over-fitting to its data. Another interesting

result is that the smaller checkerboards yield much better performance in terms of intrinsic

and 3D errors. 3D error is not used in the optimization process because the gradients on the

error are not continuous, and take longer to compute.

checkerboard square length (m) intrinsic error reprojection error 3D error (m)

9x8 0.0062 0.448± 0.106 13.44± 6.48 0.00052± 0.00031
8x7 0.0069 0.236± 0.113 06.84± 3.02 0.00030± 0.00009
7x6 0.0077 0.249± 0.092 16.47± 8.66 0.00026± 0.00009
6x5 0.0088 0.313± 0.159 11.27± 8.34 0.00024± 0.00010
5x4 0.0103 0.217± 0.080 15.43± 8.76 0.00025± 0.00007
4x3 0.0124 0.213± 0.089 08.81± 4.08 0.00018± 0.00009

Table 6.2: Reprojection and 3D errors associated with calibrating the extrinsic parameters of the
gripper camera. Both intrinsic error and reprojection errors are in pixel distances, with reprojection
error using only one pose for the checkerboard by computing it from the robot’s position.

Figure 6.5: Example environment camera calibration environment. The pattern is attached to
the robot gripper and robot uses moves it to gather data. Sampled configurations are shown on
the right.

6.3.1 Application to an Environment Camera

In the previous section, we generated configurations that ensure that the gripper camera

is moved to a visibility region of the pattern. We can always apply the same theory to

environment cameras, or cameras that are not attached to the robot links. In order generate

data, we assume the pattern is attached to a robot link and an inverse kinematics solver

exists. The new coordinate systems relationship is

(6.7) Tworldlink T linkpatternT
pattern
camera = Tworldcamera

where the transformations to be calibrated are T linkpattern and Tworldcamera. The only difference

with this parameterization is that the camera/pattern relative transformations as computed

by Equations 6.4 and 5.1 are inverted when computing Tlinks:

(6.8) Tlinks ←
{
Tworldlink (qcur) T̃

link
pattern T

−1
p (T̃ linkpattern)−1 | Tp ∈ Tpatterns

}
.

where a rough initial value of T̃ linkpattern has to be known. Every other step is equivalent to

the gripper camera case. Figure 6.5 shows several sampled configurations when the robot is

in front of the camera.

6.4 Calibration Quality and Validation

Even with informative best-view sampling, it is not clear when to stop sampling new camera

configurations. Even if all samples are exhausted, it is not clear if we can trust the calibra-

tion results from the captured data because of the uncertainties in the pattern and camera

locations. The total calibration process has 21 parameters: 4 for K, 5 for radial distortion,

6 for world pattern position, 6 for camera position. Therefore, we need evaluation metric for

how well the data constraints each of the parameters.

Being able to formulate and solve a set of equations to find the calibration parameters is

only the first step towards reliability; it is also necessary to develop methods to test the errors

of the calibration data and evaluate how well the data itself constrains all the variables. Even

if the global minimum of the reprojection error (Equation 6.2) is computed, it does not give

any guarantees on solution quality, especially when considering image spatial discretization

and noise due to light quantification. [Bouguet (2002)] uses the standard deviation of the

reprojection error |e(ω)| and their derivative magnitudes with respect to the parameters

|de(ω)
dω
| to compute a confidence for the final values. Intuitively, this would work for weakly-

constrained variables because they do not affect the final error as much and |de(ω)
dω
| would

be naturally lower, so their uncertainty is bigger. However, because image noise gets in the

way, this assumption does not hold as shown in Figure 6.6.

Using the calibration method in [Zhang (2000)], it is possible to solve for the intrinsic

calibration matrix ignoring distortion by formulating a set of linear equations. A linear

formulation makes the method powerful because a condition number for the equations can

be computed. The intuition of the method is to first compute the homography between the

image points xij and the local feature points Xj

(6.9) xij = HiXj =
[
hi,1 hi,2 hi,3

]
Xj

Figure 6.6: A plot of the intrinsic and absolute error (y-axis) vs the gradients of the reprojection
error (x-axis). The top plots were generated by taking all combinations of 5 images from a bigger
database, the bottom plots were with combinations of 10 images. This shows that gradients do not
hold any information about the confidence of result. Left side is projection error used to optimize
the intrinsic parameters while right side is the absolute error of fx.

By assuming that all feature points lie on the z = 0 plane, then the homograph can also

be represented as:

(6.10)
[
hi,1 hi,2 hi,3

]
= sK

[
r1 r2 t

]
where r1 and r2 are orthogonal vectors of the column vectors of T camerapattern . Using the

orthogonality constraint, the following equations can be built

hT1Bh2 = 0

hT1Bh1 − hT2Bh2 = 0

where B = K−TK−1 is the image of the absolute conic. B has 6 values and every image

provides 2 constraints, which can be formulated as a classic Ab = 0 problem. Let {λi}

Figure 6.7: Graphs the second smallest eigenvalue of the matrix used to estimate the intrinsic
camera parameters. As the eigenvalue increases, the deviation fx becomes smaller and more stable.
The left graphs are done for combinations of 5 images while the right graphs are with more than
11 images. The pattern is more apparent for smaller number of observations. More observations
decrease the standard deviation of the solution, but the stability is still dependent on the second
eigenvalue.

and {bi} respectively be the eigenvalues and eigen vectors of A such that λi ≤ λi+1 and bi
represents the upper triangle of B. Then b1 is the best null-vector of A and therefore the best

solution for B. However ill-conditioned data will lead A to have a null space greater than

one dimension, and there so should be more than one eigenvalue λi close to zero. Intuitively,

this surmounts to checking λ2 for ill-conditioning effects. Traditionally the ratio λ2

λ1
has been

used to check for stable null spaces, however image noise and the fact that we are ignoring

distortion makes λ1 fluctuate a lot, thus causing the ratio the yield no information. Figure

6.7 shows how λ2 varies with respect to the estimated focal length fx for several checkerboard

patterns using different numbers of images. The eigenvalue itself is normalized with respect

to the number of equations used to estimate it. An interesting occurring pattern is that

the deviation of fx from its true value grows smaller as λ2 increases. The intuition is that

the bigger it gets, the more stable the null space of A becomes. An interesting analogy can

probably be drawn between the power behind the second smallest eigenvalue λ2, and the

second smallest value used to solve the normalized cuts problem for image segmentation [Shi

and Malik (1997)].

This pattern suggests that the second eigenvalue can be used to validate the incom-

ing data. Once B is computed, the signs of all eigenvalues in B have to be the same;

otherwise, imaginary solutions would be computed for K, which is not correct. CheckCal-

ibrationValidity (Algorithm 6.2) describes the entire validity process for the calibration

data.

Algorithm 6.2: valid← CheckCalibrationValidity(CalibrationSamples)

A← 02|CalibrationSamples|×61

for i = 1 to |CalibrationSamples| do2 [
h1 h2 h3

]
← Homography({Xj},{x̄ij})3

A2i=
h
h11h21 h11h22 + h12h21 h12h22 h13h21 + h11h23 h13h22 + h12h23 + h12h23 h13h23

i
4

A2i+1=
h
h2

11 − h2
22 2h11h12 − 2h21h22 h2

12 − h2
22 2h13h31 − 2h23h21 2h13h12 − 2h23h22 h2

13 − h2
23

i
5

end6

{bi}, {λi} ← OrderedEigenDecomposition(ATA)7

if λ2 > τ1orλ1 > τ2 then8

return False9

B ←

b1,1 b1,2 b1,4

b1,2 b1,3 b1,5

b1,4 b1,5 b1,6

10

if not same Sign(Eigenvalues(B)) then11

return False12

return True13

Another necessary property for the intrinsic calibration algorithm is that it does not lose

accuracy as more images are added. Surprisingly, [Datta et al (2009)] performed a set of

experiments showing the OpenCV [Bradski and Kaehler (2008)] and Camera Calibration

Toolbox [Bouguet (2002)] do not have this property. Instead, [Datta et al (2009)] motivates

the usage of ring-based patterns along with an iterative reprojection process.

6.5 Discussion

One prerequisite for true robot autonomy is well-calibrated sensors. Although this basic

prerequisite of robotics is known to any researcher in the field, rarely do researchers consider

automating the entire calibration phase, including the data gathering phase. Consequently,

the most painful part of working with a real robot is maintaining their calibration and

managing printing many calibration patterns. In response to this reality, we introduced a

completely automated method for calibrating the intrinsic and extrinsic parameters by using

the planning and visibility theories developed in Chapters 4 and 5. By focusing on the data-

gathering phase and providing an analysis for how to determine the quality of the gathered

data. Once the planning and vision knowledge-bases are created, it provides researchers a

one-click method to calibrate a robot just by setting a calibration pattern in front of the

camera.

The quality of data problem directly relates to how well the calibration pattern can

be detected in an image along with the constraints it provides. By taking advantage of

the detectability extents of the pattern, we can create a progressive best-view sampler set

that the describes where the camera should be placed. Furthermore, by using the visibility

samplers, we can simultaneously search for possible locations the robot can move to such that

the pattern is unobstructed from view. After data gathering finishes, the pattern position

and camera calibration are computed simultaneously. Using the data and calibration quality

metrics, we can determine whether to stop, or take re-run the algorithm again with the

improved estimates. Furthermore, we showed the flexibility of the method in calibrating an

environment camera.

We discovered several surprising results when correlating error metrics to the stability of

the calibration solutions they point to. The first discovery was that the standard deviation

and reprojection errors really do not hold much valuable information if the data is already

degenerate. The algorithms can overfit to the data and the resulting errors will be very

small, even though the calibration result is off. The second discovery was the power of the

second smallest eigenvalue of a matrix that contained the solution to intrinsic calibration

matrix. We showed a very clear correlation between the magnitude of the eigenvalue and

the deviation of the focal length from its true value. We can use this test to determine when

to stop the calibration sequence, or to continue. Thus, we can provide guarantees on how

well the returned solutions model the data.

Chapter 7

Object-Specific Pose Recognition

Recognizing specific rigid objects and extracting their pose from camera images is a fun-

damental problem for manipulation. Although many pose recognition algorithms exist, re-

searchers usually concentrate on performance of the run-time process and not on the com-

plexity of the work required to automate the building processing of the program for a new

object. It is important to differentiate object-specific pose recognition from the general ob-

ject recognition problem. In vision research literature, object recognition also deals with

detecting and extracting objects from images that belong to particular classes like faces [Gu

and Kanade (2008)], cars [Li et al (2009)], and other common object categories [Griffin et al

(2007)]. The challenge is not only to segment out the particular objects that algorithms were

trained with, but to find the key features that differentiate one object class from another so

that the algorithm can generalize to objects that were never seen. Because training data is

sparse compared to the space of all possible objects in a category, object recognition research

starts crossing the borders of machine learning, language semantics, unsupervised pattern

recognition, and general artificial intelligence. On the other hand, object-specific recognition

deals with the analysis and identification of one particular object, which is a well-formed

problem that can exercise geometric and photometric analyses that are not so consistent

when entire semantic classes of objects are considered.

There are many advantages to concentrating on object-specific pose recognition. In such

a formulation, the only variations independent of the object are: lighting and environment

changes, object pose changes, and occlusions. Furthermore, it becomes possible to give a

training set that covers viewing the object from all directions, which reduces the machine

learning complexity of the problem. Because an object-specific program can be specifically

tuned to the particular object features, it is possible to speed up the pose extraction process,

and increase the detection rate by over-fitting the models to the problem. Finally, considering

175

the low cost of today’s memory and computation power, thousands of object-specific models

can be easily indexed by a small robot system.

This chapter is divided into two main contributions. The first is creating an object-

specific database that holds meaningful statistical analyses of the object’s features (Section

7.2). not. Every pose extraction algorithm relies on a common set of statistics, which we

organize into a database. In this database, we classify stable and discriminable features

while pruning out features due to noise. Stable features are clustered into a handful of

representative classes. Using these classes, it is possible to determine whether an arbitrary

image feature is part of the object. The second main contribution discussed in Section 7.3 is

a new pose extraction algorithm that builds up its pose hypotheses by hallucinating poses

given a set of image features, it does not rely on one-to-one feature correspondences making

it really powerful for non-textured, metallic object. We term this algorithm induced-set pose

extraction. The new algorithm uses feature clustering. Along with formulating a new search

process, we show how to train an evaluation metric for pose hypothesis. The evaluation

metric uses a combination of Adaboost and Markov Chain Monte Carlo methods to train a

set of weak learners to only recognize the specific object (Section 7.3.4).

We begin with the basic theories of pose recognition systems and go over previous work.

We then introduce the object database and its organizational structure. Finally, we discuss

the induced-set pose extraction algorithm and show results in the context of recognizing

industrial parts.

7.1 Pose Recognition Algorithms

Most commonly used pose recognition algorithms subscribe to very similar approaches in

their offline training and online runtime phases. In the offline model training phase, a set

of 3D features that describe the local region of the object surface are learned either through

unsupervised learning [Schaffalitzky and Zisserman (2002); Gordon and Lowe (2006); Chia

et al (2002)] or through labeled training data. A 3D feature typically contains a view-

independent descriptor of a region on the object surface [Lepetit et al (2003); Gordon and

Lowe (2006); Morel and G.Yu (2009)], or the less common case of a view-dependent descriptor

that also encodes some orientation information. In the runtime phase, correspondences are

computed between the extracted 2D image features and the 3D object features. Two features

are matched if the distance between them in the feature descriptor space is small. Because the

matching process only considers local information about the image, it is prone to making

mistakes; hence, algorithms like SoftPOSIT [David et al (2004)], RANSAC [Fischler and

Bolles (1981); Chum (2005)], or Least Median of Squares [Zhang et al (1995)] are used to

Figure 7.1: A well established pose extraction method using 2D/3D point correspondences to find
the best pose. Works really well when the lighting and affine invariant features can be extracted
from the template image.

quickly search for a matching that produces the most stable pose (Figure 7.1).

Some pose extraction systems store a set of views labeled with the object pose [Lepetit

et al (2003)] instead of explicitly extracting the geometry of the target object; during runtime,

epipolar geometry are used between the current image and database images to compute a

consistent pose with all constraints. Furthermore, [David and DeMenthon (2005)] has shown

how to perform pose recognition when the image features are lines. Because matching lines

is more computationally intensive and poses generated by RANSAC are frequently wrong,

several heuristics have to be employed to ensure good performance.

A lot of object pose estimation research [Gordon and Lowe (2006); Lepetit et al (2003);

Chia et al (2002); David and DeMenthon (2005)] formulates the extraction problem as an

iterative algorithm that relies on a previous measure of the pose to seed the search for the

current image. At startup time, these algorithms typically rely on simple methods to seed

the search, but each method has its own shortcomings that does not have any guarantees on

picking the correct object.

Perhaps the set of algorithms closest to our formulation of induced-set pose extraction are

ones that analyze the object geometry and attempt to come up with Gestalt rules on how to

extract a pose estimate from the composition of low level features [Goad (1983); Bolles et al

(1983); Grimson and Lozano- Perez (1985)]. Specifically, [Wheeler and Ikeuchi (1992, 1995);

Gremban and Ikeuchi (1993, 1994)] have proposed ways to automatically extract features on

the object surface and match features to them using discrete search based on aspect graphs.

Our method differs from these methods in that we do not formulate the problem with respect

to 3D object features and aspect graphs, and we do not search for correspondences between

image features and object surface regions.

7.1.1 Classifying Image Features

We fist explain our notation of the image features and then review popular low-level features

that could be used in this framework. There are two categories of feature detectors we use

in our framework: point features F0 describing local regions in the image centered on a

point, and curve features F1 describing a set of connected image points. Each feature has

geometric parameters Mfd describing where it is located in the image and visual parameters

fd describing the image at the feature’s local neighborhood.

Point Features

For a feature f0 ∈ F0, f0 is the local descriptor for the image at that region and Mf0 is the

local coordinate system including position, orientation, and scale. Point feature algorithms

are separated into estimating the set of interest points from which the coordinate system of

each feature can be computed, and describing the local region around the feature’s location.

A great summary of interest point detectors can be found in [Mikolajczyk et al (2005)] where

the following region detectors proposed in [Mikolajczyk and Schmid (2002, 2004); Tuytelaars

and Van Gool (2004); Kadir et al (2004)] are compared with each other.

An image descriptor is typically represented in a vector space with a kernel-based distance

metric. This formulation allows a feature to be easily used in machine learning and clustering

algorithms. Some of the most popular low-level feature descriptors like Gabor filters are

inspired from the sparse-coded nature of the visual cortex [Serre et al (2005)]. These features

can encode multiple frequencies and respond to spatial intensity changes, which makes them

robust to color and other lighting variations. In order to encode higher level information like

texture, [Lowe (2004); Bay et al (2008)] have proposed a scale-invariant set of features. As

the name implies the feature’s coordinate system encodes the orientation and scale of the

region, making it slightly robust to affine transformations. Several new formulations of SIFT

[Lowe (2004)] make affine invariance a priority for robust pose extraction [Morel and G.Yu

(2009); Wu et al (2008)]. SIFT features represent the local region as an oriented histogram of

spatial derivative responses. [Moreels and Perona (2005)] show a survey of the performance

of feature descriptors for accurately recovery viewpoint changes.

Line Features

A line feature space F1 contains all 1D curves from the image with Mf1 defining the shape

of the curve. There are many algorithms that produce a black and white map detecting

Figure 7.2: Database is built from a set of real-world images, a CAD model, and a set of image
feature detectors. It analyzes the features for stability and discriminability.

the edges of the image. By combining all edges into connected components and segmenting

them whenever an edge branches, we can compute a set of 1D curves. Although the shapes

of the curves encoded in Mf1 alone can be used for matching image curves, there also exist

edge descriptors [Mikolajczyk et al (2003)] robust enough to detect bicycles in images.

7.2 Building the Object Database

Given a geometric CAD model of the object along with real-world training images labeled

with the object pose, the compilation process automatically analyzes the feature statistics

and records the relationships between features and poses allowing pose extraction without

forcing traditional 2D/3D feature correspondence matches. During the training phase, we

compute the stability density of feature detectors on the object surface and use it to extract

the most prominent geometric and visual word clusters. The true power of the presented

database comes from the unsupervised learning of stable features. Furthermore there is no

restrictions on the quality of the feature detectors to be used; the system itself will determine

if a feature detector is suitable for detecting the pose or not.

We first analyze the feature statistics and extract the most stable features. We then

build a database that stores the relationships between extracted features and the object

pose they were found in. Because relationships are view-dependent and stored as pose sets,

information pertaining to the visibility of features is preserved and taken advantage of in

the search process. For example, if a particular feature only appears on the front side of

the object, only poses with the front side showing will be hypothesized when that feature

is detected in the image. The run-time search process randomly selects a set of features,

generates a set of hypotheses consistent with all of them, and then validates each hypothesis

Figure 7.3: A 3DOF motorized stage and a checkerboard pattern for automatically gathering
data.

with all the neighboring features using a learned classifier. Since the framework uses the

CAD model of the object, it can compute the depth map of the object, measure inter-

occlusions due to complex objects, and perfectly segment out the region the object occupies

in the image. It it the accessibility of the geometric information that allows us the extract

noise-free information and compute the stable geometric and visual words.

The generation process itself is divided into three main components as shown in Figure

7.2. The first four stages analyze all the feature detectors independently of each other.

7.2.1 Gathering Training Data

The CAD model is used to define the coordinate system of the object and to extract the 2D

projected region along with expected depth values. The 6D pose we extract from images is

the affine transformation of the CAD model with respect to the camera. Figure 7.3 shows

the setup we use for gathering the training data. We first gather images annotated with the

pose of the object by placing the object next to a stable calibration pattern whose 6D pose

can be easily recovered. Then we measure the relative transformation between the pattern’s

and the real object’s coordinate systems. We mount this setup onto a 3DOF platform, solve

its inverse kinematics equations via the ikfast tool developed in Section 4.1, and take images

uniformly distributed around the object’s surface. The object’s pose can be recovered by

multiplying the calibration pattern pose and the measured delta transformation.

Figure 7.4: Example rendering a blue mug from novel views using only one image in the database.

Image-based Rendering

The searching processes for induced-poses require being able to gathering a dense set of poses

that produce a specific feature. The images we can realistic gather on a robot stage are on

the order of 300-1000, any more images would significantly slow down the analysis processes.

Therefore, being able to render the object from novel views can greatly reduce the database.

Because we have a labeled set of training images, we can simulate rendering of the part from

novel views given the lighting conditions the part was captured with. Assuming the lighting

stays constant throughout the entire time the database is capture, we can extract the bi-

directional reflectance distribution function of every point on the surface of the object, which

will allow accurate simulations of the color. The most naive way to compute image-based

rendering is by extracting textures from every image and linearly interpolating the textures

based on the nearest neighbors of the novel view. When using such a naive method, stitching

two different could be difficult due to lighting variations, therefore it is better to stick with

the closest image. Figure 7.4 shows an example of rendering one image from novel use by

extracting each texture.

7.2.2 Processing Feature Geometry

The goal of this phase is to transform all image features into the object’s 3D local coordinate

system. Once all features are in the same coordinate system, we can start analyzing their

distributions and occurrence density on the object surface. Because the object geometry is

known and we have a labeled training set, the depth map Depth(T,K) : R2 → R can be

extracted from the image where K is the intrinsic matrix of the camera. We assume any

Figure 7.5: Examples CAD models (first row), the training images (second row), and the extracted
depth maps (third row) of several objects.

nonlinear distortions due to camera lens are already removed from the incoming images, so

we deal with ideal pin-hole cameras. Figure 7.5 shows several examples of objects and their

depth maps. Using depth information, we can compute the 3D location of the feature on

the object surface. Let x̄ ∈ Mf be an image point on the feature, then the corresponding

3D point is

(7.1) X = T−1K−1

[
x̄

1

]
Depth(T,K)(x̄)

where T =
[
R t

]
is the object pose.

If a point feature has an image orientation θ, we to compute its orientation in the object’s

coordinate system. By using the object’s surface normal n(X) at the 3D location of the

feature, we can extract a unique direction D that is orthogonal to n(X) and its projection

matches θ:

(7.2) D ∝
(
R−1 − n(X) n(X)TRT

)
K−1

cos(θ)

sin(θ)

0

 .
Figure 7.6 shows the set of raw directions extracted from the entire training database

and the resulting mean directions extracted after filtering and clustering. During the pose

Raw Clusters In-plane Angle Distribution on Object Surface (radians)

Figure 7.6: Orientations from image features are projected onto the object surface and are clus-
tered. By re-projecting the raw directions on the surface plane and converting to angles (right
graph), we can compute all identified angles (in this case 0 ◦ and 180 ◦) and the standard deviation
of the particular mean direction ±15.5 ◦.

extraction process, if a feature coming from the detector used in Figure 7.6 has a direction,

we can use the clustered directions to narrow down the originating position to two possible

surface positions within a [−31 ◦, 31 ◦]
⋃

[149 ◦, 211 ◦] in-plane orientation offset.

7.2.3 Feature Stability Analysis

Once all the features have been transformed to a common coordinate system, we can start

examining the occurrence statistics and check if there are any meaningful locations on the

object surface where a feature detector fires frequently and is stable. We first compute the

density of feature positions on the object’s surface using kernel density estimation [Ihler and

Mandel (2003)]. The normalized density estimate with respect to the training data density

(lower right graph in Figure 7.3) becomes

(7.3) pF0(f ∈ F0 | X)

By pruning all positions that are less than a preset threshold, we can single out the

stable locations (Figure 7.7). Setting the correct threshold is very tricky since different parts

have important features at different distances from each other, also the threshold should be

independent of part size. For 0D features, it is enough for the kernel to be just a function of

3D position. However, for 1D features, the direction of the extracted edges is very important

information and has to be included in the KDE:

(7.4) pF1(f ∈ F1 | X,
−→
X).

Figure 7.7: Shows the stability computation for a hole detector and the stability detected locations
(red).

Because there is no ordering on the directions of the lines (the negative direction is just

as likely), it is recommended to train the KDE with both directions specified per sampled

point. Figure 7.8 shows the stability results of a line extractor for one part and how the line

features in one image get pruned.

Figure 7.8: Stability computation for a line detector (upper right is marginalized density for
surface). The lower images show the lines from the training images that are stably detected (red)
and those that are pruned (blue).

After many trials, we have found that first evaluating all the stability measures for all

features and setting the kernel bandwidth to be difference of the lower and upper quartiles

of the data, with the threshold for stability being the median of the data works the best.

Such parameters are independent of object scale, which is a prerequisite for robust thresholds.

Figure 7.9 shows the stability distribution and results of a hole feature detector. Surprisingly,

some of the holes marked in red on the CAD are determined to be unstable, and therefore

bad for detection. When asking a person to set the thresholds manually, it is likely to get a

Figure 7.9: Shows the statistics of a hole detector on industrial metallic parts. Each part was
trained with 300 images around the sphere. The right side shows the final filtered features, which
are used for extracting geometric words.

Figure 7.10: Shows the effect of poorly labeled data sets on the raw features (blue) and the final
filtered features (red). The filtered clusters for the correctly labeled set become much more clear.

threshold where all holes pass, which is not always correct.

Finally, we should stress the importance of an accurately labeled training set when com-

puting these statistics. Figure 7.10 shows a comparison of the features extracted from a

poorly measured labeled set, to ones with a more accurate relative pose calibration pattern.

Even when the offset is a couple of millimeters in the real world, it can have dire conse-

quences on the distribution of the affected points, therefore the training image gathering

phase should be carefully performed so such errors are not introduced into the system.

7.2.4 Geometric and Visual Words

Using the stable positions for each detector, we can cluster the descriptor vectors for 0D

features and the curve shapes for 1D features. We call the mean of all descriptor clusters

visual words and the mean of the shape clusters geometric words. Given image features

f ∈ F , we can quickly check if they match to any of computed words WF and reject them

from being considered as valid features if there is no match. This is a powerful way to reduce

Labeled Features Histogram and Clusters of Sizes

Figure 7.11: The histogram and labels of a feature’s descriptor distribution on the object (in this
case, it is the size of the holes).

the number of features considered during pose hypothesis generation.

To cluster the 0D feature descriptor space, we employ an Expectation-Maximization

algorithm with an automatic initialization of expected number of clusters. Figure 7.11 shows

a simple clustering of a hole descriptor for area.

Analogously, we can develop a geometric set of words for 1D features by clustering the

stable edge outputs and extracting the mean shape. We first develop a curve alignment

algorithm based on Iterative Closest Point methods in conjunction with simulated annealing

and softassign [Gold et al (1998)]. Once the algorithm fits the curves as best as possible, we

can sum all closest-distances between the two curve point clouds to get a rough measure of

the shape difference. Using this distance metric, we sample a subset of lines from the training

images and compute the distances between all pairs. This distance graph has the property

that curves with similar shapes form cliques when the edge connectivity is thresholded based

on distance. Using a fast approximate clique finder [Niskanen and stergrd (2003)], we can

quickly compute all the curve clusters as shown in Figure 7.12. For each curve cluster, we

choose the mean as the curve whose sum of distances to all other curves is the least.

For each word w ∈ W , we separately compute the probability density pw of its occurrence

along the object’s surface. This density is used during the pose evaluation phase.

Figure 7.12: The major shape clusters extracted. The clusters on the left (simpler shapes) are
more frequent than the clusters on the right (more complex shapes).

Figure 7.13: PostgreSQL database that stores the relationships and dependencies of all offline
processes used for pose extraction and object analysis.

7.2.5 Relational Database

We use the SQL relational database query language for organizing the statistical data and

results for a specific object. Each set of algorithms and results are divided into their own

table and have unique ids for instances of these parameters. It is very common for processes

to rely on the results of other processes. For example, the stability measure relies on the

feature extraction and 3D geometric reprojection results in order to build a distribution of

features. Each process also has its own generation parameters like thresholds that make

it unique. SQL databases allows such relations to be encoded, and thus it can build an

information dependency graph of object data shown in Figure 7.13. The functionality of

the object database is very similar to the planning knowledge-base discussed in Chapter 4

(Figure 4.1). The database can store the computation of every process with multiple sets of

generation parameters, which allows us to easily test new parameters and keep track of stale

models because their dependencies were updated.

The biggest advantage of SQL is that it is a query language, which separates the database

storage from the actual code and OS used to generate the data. Creating unique ids for every

object allows us to create a global database of the appearance and statistics of objects that

users can easily query over the network. Although it would be difficult to apply this to home

scenarios where the environments are unstructured and the object types are on the order

of thousands, factories already have databases of every component that goes into their final

products. Augmenting them with the object appearance and statistics could go very far in

automating the vision processes of assembly lines handling the parts.

Figure 7.14: An example of the induced poses for a corner detector. The corner confidence ψ(f)
(top) is used to prune out observations with low confidence. The final induced poses T (f) for a
corner detector are stored as a set (bottom).

7.3 Pose Extraction using Induced Pose Sets

A fundamental flaw many pose extraction algorithms suffer from is their usage of 3D object

features: a traditional extraction process first hypothesizes a set of matching correspondences

between image features and the 3D object features and then fits the best pose using linear

algebra. The fundamental problem with this traditional view is that the view-independent 3D

object features are forced to represent the view-dependent output of a 2D feature detector.

This puts strict scale and orientation invariance constraints on the actual usable feature

detectors. Because of the inherent discretized nature of an image, no feature detector exists

that can produce a view-independent descriptor on an object with an arbitrarily shaped

surface.

To solve these problems, we present a pose search algorithm that does not require the

use of 3D object features, which allows it to remove any view-independence requirements

on feature detectors and completely eliminates the correspondence step between 2D image

features and 3D features. Simply stated, our solution is to take a brute-force approach and

store all possible views of the object that could generate the particular features of interest.

This concept is called induced pose sets, which is the set of all pose hypotheses consistent

with the image feature they are encoding. At run-time, a set of possible pose hypotheses is

queried by matching the image features with the database features. During the run-time pose

search process, pose hypotheses are generated from intersecting the induced pose sets using

neighboring features in the image. Not relying on 3D features allows us to easily automate

the training process because a human or algorithm does not have to struggle matching the

output of a feature detector to specific locations on the 3D object geometry.

In order to validate each pose hypothesis with the entire image, we present a classifier

that measures the contributions of all the features that lie on the projected region of the

Figure 7.15: Several induced poses for a particular curve (red).

part.

7.3.1 Generating Induced Pose Sets

The concept of induced poses allows us to store most nonlinear, view-dependent information

about the relationship between features and the pose of the object. In order to reduce

computation and filter unstable features, we only generate induced poses for the visual and

geometric words computed in Section 7.2.4. Each feature f can induce a set of object poses

{T} such that the object seen at one of these poses has a feature similar to f . For example,

assume that F0 is a corner detector, and the object is a square joined with a circle (Figure

7.14). The fact that a corner is visible in an image greatly constrains the possible poses

of the object. These constraints are dependent on the geometry of the object, the feature

detector itself, and the feature detector’s confidence ψ(f). Therefore, the most reliable way of

capturing these constraints without imposing any restrictions is by a discrete set of induced

pose hypotheses T (f) that cover every word f (Figure 7.14 right):

T (f) = {T | ∃g ∈ F (Render(T)),

ψ(g) > γconfidence

d(f, g) < εf ,

d(Mf ,Mg) < εM}(7.5)

d denotes a distance metric corresponding to the respective inputs and Render(T) is the

image of the object at pose T . Equation 7.5 represents the space of poses whose rendered

image Render(T) contains contains a feature g that matches with the query feature f with

high confidence. In order to minimize space requirements, the poses themselves are nor-

malized with respect to the feature’s image position and orientation, which removes three

degrees of freedom. Figure 7.15 shows a set of poses for a specific curve. Figure 7.16 shows

the sets using mean images.

Figure 7.16: Mean images of the induced poses for an edge detector of a paper cup (in simulation).

The construction of induced poses first starts by seeding each of the visual and geometric

words with the pose information from the training data. In order to search other poses,

we use image-based rendering of novel views (Section 7.2.1). To quickly explore the pose

space around the seeds, we use the Rapidly-Exploring Random Trees algorithm [LaValle and

Kuffner (2000)], which can maintain all the constraints in Equation 7.5. It is necessary to

use RRTs for exploration of the space because the constraints really restrict the solution

space, and hitting a point in the solution space by just randomly sampling will take a very

long time.

Pairwise Poses

Unfortunately the induced pose sets for point features are very big. If a word does not have

an associated orientation, its induced set is 4 DOF. With reasonable discretization values,

the size of the set can reach 600000 sets, which leads to memory and speed problems in the

pose search phase. In order to reduce the computation, we create a pairwise pose set by

storing the consistent poses of two point words. If none of the words have orientations, the

degree of freedom of the sets is two and the set is parameterized by two image positions.

If the first feature has an orientation, then the degree of freedom is one, and the set is

parameterized by two image positions and the relative orientation of the pairwise direction

with respect to the first image feature’s orientation. If there are a total of N visual words

for all detectors used, then there are at most
(
N
2

)
pairwise sets. Even though the number of

induced sets increases, adding pairwise poses greatly speeds up the search task and reduces

memory constraints making it a necessary step for this framework.

7.3.2 Pose Evaluation and Classification

The last stage builds a classifier using all detector responses to decide whether a pose hy-

pothesis is consistent with all the image features inside its boundary.

Up to now we have analyzed the output of individual detectors and covered the generation

Algorithm 7.1: score← EvaluateDetector(T ,F)

score← 01

for f ∈ F (I) do2

Xsurface = RayCast(K−1Mf ,R
−1
[
0 0 1

]T
)3

W ← {w | w ∈ WF
∧
d(f, w)}4

if F is 0D then5

if not Xsurface then6

continue7

f+
score ←

{
log
∑

w∈W pw(f | Xsurface), if W 6= ∅
log pF(f | Xsurface), otherwise8

f−score ← f+
score9

else if F is 1D then10

if
|Xsurface|
|Mf |

< αF5 then11

continue12

f+
score ←

∑ log pF (f | Xsurface,
−→
X surface)

density13

f−score ← −αF4 f+
score +

∑ log pF (f | Xsurface)
density14

if ∃ w ∈ W, d(T, T (w)) < αF1 then15

score← score+ max(0,
f+
score+α

F
2

Ffrequency
)16

else17

score← score−max(0,
αF3 (f−score+αF2)

Ffrequency
)18

end19

return score20

of induced pose sets. During run-time, we use this information to generate pose hypotheses

by picking a small random set of features and intersecting their pose sets. Due to this process,

a hypothesis is only guaranteed to be consistent with a small set of features; therefore, we

have to employ a separate pose evaluation metric that takes into account all the features that

lie in the projected object region. We first present an evaluation metric for the contribution

of individual 0D and 1D feature detectors, then we treat all the detector values as a vector

and use Adaboost to find a separating hyper-plane between correct and wrong poses.

Given a pose hypothesis T =
[
R t

]
, we first find all features inside the object and

then compute a score using EvaluateDetector (Algorithm 7.1). Since we have the

geometry of the object, we can inverse project each feature onto the object surface using

Figure 7.17: The individual detector scores for good and bad poses for the object in Figure 7.3.
Using Adaboost, the misclassified good poses and misclassified bad poses are marked on the data
points.

RayCast(pos,dir) and then use the stability measures computed in Sections 7.2.3 and 7.2.4

to compute how well the feature location matches the statistical models. If a feature f ∈ F
is on the object surface and it matches to a word in WF and the distance to the induced

pose set d(T, T (f)) is small, then it is positively supporting and its stability score is added

to the total; otherwise, it is negatively supporting and its stability score is subtracted. For

1D features, a certain percentage of the curve has to lie inside the object region for it to be

considered in the score. Once a feature is verified to lie on the surface, EvaluateDetector

first computes the matching words inWF ; if there is a match, the stability density pw of the

particular word is used, otherwise the density of the detector pF is used.

Classification

The final classifier uses EvaluateDetector to convert all the image features into a D-

dimensional detector space and then uses boosting [Pham and Cham (2007)] to separate the

space for correct and wrong poses statistics. The detector space greatly depends on the αF

parameters in EvaluateDetector (Algorithm 7.1), which are dependent on the feature

detector. Because the final goal is to build a D-dimensional space that easily separates

the correct poses from the wrong, we learn the evaluation parameters while simultaneously

learning the separation criteria via boosting. The evaluation parameter space α is highly

nonlinear, so we use Markov Chain Monte Carlo (MCMC) optimization to search the solution

space. For every new state α queried by MCMC, we compute the best AdaBoost classifier

and set the probability of the Markov state as e−ε
′
, where the ε′ is the classification error of

the new state. The MCMC state transitions to the newly sampled state with a probability

of eγ (ε−ε′).

Figure 7.18: For an object that has four holes, there are many valid poses of the object in the real
image that can hit all four holes. In fact, using hole features is not enough to extract a confident
pose, 1D curve features are absolutely necessary.

By learning a separating classifier, the importance of a feature detector to the evaluation

process can be quantitatively computation, a task which was done previously by people.

From looking at the classification results of points vs lines for a metallic part shown in

Figure 7.17, we observe that point feature scores do not play a key role in determining how

good a particular pose is. This result only becomes clearly apparent when trying to extract

meaningful poses just from the point detector as shown in Figure 7.18. Pose extraction

will frequently return poses where all holes are matched to an image feature, but the pose

actually straddles many parts.

7.3.3 Pose Extraction Process

The final pose extraction algorithm is very reminiscent to the way RANSAC searches for

solutions. The basic algorithmic process is shown in Figure 7.19. After all the image features

are computed, we find all matches with the visual and geometric words databaseW computed

in Section 7.2.4. For each matched feature f , we gather the canonical induced pose sets

from W and transform them into the current image using the feature’s location Mf . Then

we pick a random support feature and start searching its neighborhood for valid poses using

SearchWithSupport (Algorithm 7.2). Given the neighborhood of the supporting feature,

we sample K features successfully matched to words in the database (the combinations are

sampled without replacement). Because of the compilation process, we are guaranteed that

the poses lying in the intersection of the selected features’ induced poses are all consistent

Figure 7.19: The search process first matches image features to a database, then randomly
selects a set of features and tests for consistency by intersecting their induced pose sets. Each
pose candidate is validated based on positively supporting and negatively supporting features lying
inside the projected object region.

with the features. If the intersection is not empty, then we evaluate every valid pose T by

first getting the D-dimensional vector in the detection space, and then running the learned

Adaboost classifier h. It is important to note that the search process simultaneously considers

all the consistent pose hypotheses within a given discretization limit.

Figure 7.20 shows an example of transforming the induced pose sets into pose hypotheses

for particular image features. The first row shows the pose hypotheses for two point features

and the resulting set of poses when the hypotheses are intersected. Even though the number

of consistent poses is greatly reduced, it is still not enough to completely constrain to one

pose. The second shows the same process except with curves; the pose hypotheses for one

curve are much smaller, therefore they constrain the pose more. Finally by choosing two

curves and two points that lie on the part, we can completely constrain the pose to the

correct one. Although the method is very effective when choosing a set of features that all

lie on the same part, RANSAC will more frequently choose image features that do not lie on

the same. Because the number of chosen feature is three or four, the intersected pose sets

Figure 7.20: Several examples of chosen image features (blue) and their pose hypotheses (in
white). The bottom row shows the positively (green) and negatively (red) supporting features of
the pose hypothesis (blue).

Algorithm 7.2: T ← SearchWithSupport(support)

Neighs← FeatureNeighborhood(support)1

for F = Sample(C(Neighs,K)) do2

for T ∈
⋂
f∈F T (f) do3

V ←

EvaluateDetector(T,F1)

EvaluateDetector(T,F2)

...

EvaluateDetector(T,FD)

4

if h(V) >= 0 then5

return T6

end7

end8

return ∅9

are very likely to be non-empty. In fact, most of the processing time of the search algorithm

is rejecting invalid pose hypotheses because the chosen features do not lie on the same part.

In order to speed up search, the evaluation function is written so as to quickly reject a

hypotheses based on the order of features it looks at without having to evaluate all the

features. The final row shows the positively and negatively supporting features determined

from the pose evaluation phase. The correct pose has mostly positive supporting features,

therefore it passes the test. The incorrect poses pass through a lot of wild features that do

not support it, therefore most of the features it touches subtract the final evaluation score.

7.3.4 Experiments

We have successfully tested the induced-set pose extraction method for both metallic indus-

trial parts (Figure 7.21). The training process is time consuming and currently takes on the

order of a day for 300 training images. Using a hole and line feature detector, extracting

the initial 3D geometry of the features takes about one hour. Compute the stability mea-

sure takes 10-20 minutes per feature. Clustering the filtered hole features into the visual

and geometric words took minutes. Clustering the filtered curves takes 10-20 hours when

using ICP softassign; afterward, we reduced this down to less than 30 minutes. Building the

induced pose sets takes on the order of 5 hours for each feature where the average time used

to search each words is 5 minutes.

The goals were to increase detection rates and quality of the result rather than increase

speed, so we set small discretization factors for most of the generation stages in the algorithm.

Figure 7.21: Results of pose extraction using induced pose sets.

The detection process for the part shown in Figure 7.20 takes 2 minutes on a multi-core

computer system running four threads. The bulk of the time is spent matching image

features to the database of words. After all the feature are matched and pose hypotheses

are built, it takes 10-20s to detect the first pose in the image when RANSAC samples four

features at a time; the combination is not tested again. If the four sampled features are

on the same part, then our method will immediately find the correct pose; however, most

combinations of features involve more than one part. Therefore, the evaluation function

(Algorithm 7.1) was optimized for early rejection of hypotheses, being able to evaluate a

pose in less than 0.05 seconds. For a full bin, the success rate is greater than 98%.

Because we are interested in picking up all parts from the bin, we put 100 parts in the

bin and took out a part after it was detected by the system. Because the average height and

number of candidates for detection slowly decreased as we removed parts, the detection rate

started dropping. Of the 100 parts, there were 5 times that the program could not detect a

part.

We measured the ground truth error in each of the six degrees of freedom of the pose

by mounting the part to high-precision linear and rotary stages. The camera is 2 meters

above the part, so we would expect very large errors in Z. The part first starts with its

Figure 7.22: Ground-truth accuracy results gathered for each DOF of the pose.

Figure 7.23: Some geometric words cluster very densely around specific points on the object
surface. These stable points can be used for alignment.

biggest face pointing towards the camera and the system records the first pose (Figure 7.22

top). For every delta movement the stage makes, the new detected part should have the

same delta movement. The deviations from all delta movements of all degrees of freedom

are recorded and shown in Figure 7.22. The in-plane movements of the camera were the

most accurate, with the average raw translation error being 2.1mm, and the average raw

rotation error being 6.1 ◦. The out-of-plane rotation error is on average 17 ◦, we believe this

is due to random choosing of supporting features for building up the pose hypothesis. In

order to speed up the evaluation function, we train the evaluation function in the learning

phase to pass semi-good results also. Because the evaluation function directly looks at the

projected footprint of the part, the larger the change in footprint, the more chances it has to

intersect with a bad feature. Out-of-plane rotations and changes is depth do not change the

footprint of the part that much, in fact they just make it smaller or bigger without offsetting

it that much. And our ground-truth measurements are consistent with this observations. It

is interesting to note that the rotations around the Y-axis have a little smaller error than

those around the X-axis. The reason can be explained again with the footprints since the

part is twice longer on its X axis, than its Y axis; therefore rotations around Y move the

X-axis part more.

Pose Alignment

Because of the inherent discrete sampling nature of the supporting features and the fact that

the evaluation function is trained with slight pose disturbances, it implies that the raw pose

measurements returned from the algorithm are not going to be matching the projection of

the part perfectly. Therefore, we introduce a post-processing step that aligns the part to

the 0D features around it. Basically, some geometric words of the 0D point features cluster

densely around the point surface, so the mean of this cluster can be extracted with very

high confidence as shown in Figure 7.23. If the detected part uses any of these geometric

words in its matching, then it has a 2D position of their measurements, and it has their 3D

coordinates. Therefore, we can use a 2D/3D point correspondence algorithms to find a new

pose that perfectly aligns the 3D geometric word points to the 2D image points. The degrees

of freedom we can fix depends on the number of point correspondences:

• 1 Correspondence. Move the part only in the XY plane to match.

• 2 Correspondences. Solve for the XYZ translation and best in plane rotation while

maintaining the out-of-plane rotations.

• 3 Correspondences. Solve for closest transformation using a perspective three points

algorithm [Haralick et al (1994)].

• 4+ Correspondences Solve using standard least squares techniques.

The even rows in Figure 7.22 show the improvement using the alignment. We always

have at least one geometric point to align, therefore the XY errors decrease to 1.1mm average

error, which reduced by 48%. The next parameters to see a benefit are the Z depth with

an average error of 22.2mm (30% reduction), and the in-plane angle with an average error

of 5.2 ◦ (15% reduction). The out-of-plane rotations were rarely affected, mostly because we

rarely had more than 2 point correspondences to align. The alignment phase is very quick

to implement and practical to increasing accuracy.

7.4 Discussion

Every pose extraction algorithms needs a set of features on the object to track and base its

estimates on. The more discriminable the feature is compared to other features in the scene,

the more easily the object can be detected. Furthermore, the stability of the feature on the

object’s surface directly relates to how well it can be localized within the object coordinate

system, this implies that the pose estimates will be more accurate. In the first half of this

chapter, we presented an object surface analysis method that can find stable and discrim-

inable features. The training data for the method requires attaching the object of interest

to an already known calibration pattern, which makes the method accessible to anyone.

The power of having accurately labeled training data allows for a plethora of feature-surface

statistics to be computed. In order to have the stability statistics be coordinate system and

scale independent, we motivated the usage of the median and difference of lower and upper

quartiles of the stability measures for filtering out bad features. The filtered features are

then clustered to yield a set of geometric and visual words specific to the appearance of the

object. The analysis is general enough to be applied to any point or curve feature, even if

it has a descriptor vector associated with it. Any rigid object of any material can be easily

inserted and analyzed by the system. Furthermore, the generality of the method allows it to

be used as a pre-processing step in any existing pose extraction algorithm.

We also performed a case study of organizing the computational process of the stability

using a modern relational database. The database has many practical advantages of tracking

data dependencies and can offer access to the data to other parties over the network. Using

this database, we could easily train new objects into the system without worrying about

tracking generation parameters and files. We believe that object-specific databases encoding

vision information will become mainstream in industrial settings where every part has to be

categories and carefully tracked around a factory.

In the second half of the chapter we presented a novel pose extraction method that

takes advantage of the visual and geometric words computed from the stability database.

Because each word stores the poses of the object that were used to generate it, it gave rise to

the formulation of induced pose that inverted the feature generation process. Instead of the

object’s pose generating the feature, a feature could generate the possible poses it came from,

a process very reminiscent to the inverse kinematics problem for motion planning. Induced-

set pose extraction has the advantage of not relying on 2D/3D feature correspondences

because it can implicitly encode the 3D feature information into a pose set estimate, this

allows it to hypothesize all possible consistent poses given a set of image features. By being

able to explicitly encode all consistent poses, the induced-set algorithm is not forced to

commit early to a wrong decision anywhere in the process.

As long as the image features belong to the same object, induced pose sets can find

a correct pose that supports all the features. However when multiple parts are scattered

in a bin, the search process has a lot of difficulty picking objects that belong to the same

part. Therefore, we also presented a learning-based pose evaluation method using positively

and negatively supporting features. Because of the explicit handling of negative supporting

features, small occlusions from other objects can really decrease the evaluation score, which

guarantees that the detected parts are always completely visible and on the top of the pile.

This behavior is desirable for industrial bin-picking scenarios because a robot eventually has

to approach from the top and be able to pick up the part unhindered by other obstacles.

Furthermore, we can use this behavior in a second way: if the system is asked to evaluate a

pose of an already known part, the system can determine if the part is occluded and exactly

where the occlusions occur.

Chapter 8

Conclusion

Even today in 2010, robots are not freely roaming the streets and autonomously moving in

people-present environments because of frequent execution failures and safety fears. Espe-

cially in industrial robotics, execution failures come at the highest cost where an assembly

line has to be stopped in order to recover from errors. Although it is possible to design such

systems, it takes a lot of manpower and research to meet all the standards and handle all

the possible conditions. With today’s understanding of the problems, the mathematics and

low-level robot control issues of manipulation are well-understood and automated; however,

the less automated parts of manipulation continue to be the generation of more analysis-

heavy components like object recognition and motion planning. By clearly identifying and

showing how to automate several of the analysis-heavy components for pick-and-place ma-

nipulation tasks, we can enable many mass-production systems to be configured and put

into use quicker, which has far-reaching implications for today’s economy.

The presented manipulation architecture should be treated as a minimal set of compo-

nents that achieves its task while fully exploiting the provided specifications. The contribu-

tions of the thesis center on the interplay between the kinematic, geometric, sensor visibility,

and vision recognition elements. The algorithm design decisions made in each chapter priori-

tize the solvability of the problem, the efficiency of the solution, and the decrease in algorithm

parameters that have to be tweaked. Furthermore, we concentrate on successful execution

and task completion reliability over optimizing other quality metrics like generating smooth,

time-optimal, energy-optimal, safety-optimal, or natural-looking robot motions.

203

8.1 Contributions

As a small step towards these goals, the thesis presented a framework for automated con-

struction of the planning and vision processes required for reliable manipulation tasks. The

focus was specifically on the geometric and statistical analyses of sub-problems common in

manipulation. We sub-divided the problem into a planning knowledge-base and vision-based

database and offered many generic algorithms that help in the entire spectrum of manipula-

tion planning. Chapter 2 starts with the outline of the execution architecture for completely

a simple manipulation task and maps out all the components necessary for reliable execution.

Components that play a major role in the discussed architecture are: the goal configuration

generators that analyze a scene and send informative configuration goals to the motion plan-

ners, the knowledge-bases that encode frequently queried information of the robot and task,

and planning with sensor visibility. Using the layout of the architecture, Chapter 3 delved

into the complexities of the planning algorithms necessary to connect the initial conditions

and the goals. It presented the structure of generalized goal configuration samplers that

form the basis for representing the goal space of a plan. Several types of planning algorithms

were presented: planners having explicit goal spaces that can be sampled from, planners

that whose goal condition is to validate a know path, and planners that can change grasps

during a plan. Chapter 4 presented the structure of the planning knowledge-base and offered

algorithms for the generation and usage of more than seven types of components that are

critical for manipulation planning. By modeling the computational dependencies of each

components, it has allowed us to be methodical on how information gets tracked throughout

the system, and what domain knowledge is necessary for the generalized planners. Chapter

5 presented algorithms that consider the visibility of the sensors and offered two methods

of combining the visibility planning with the goal-oriented grasp planning algorithms. It

showed the importance and efficiency of having a camera sensor verify any object position

before the system can begin planning to grasp it. Two experiments were presented: a mobile

dual-arm humanoid that picks up cups from a sink and places them on a counter, and an

industrial robot that picks up parts scattered in a bin. Chapter 6 presented a completely

automated extrinsic camera calibration system using the planning and visibilities theories

presented thus far. An advantage of the calibration system is that it can work in any environ-

ment and does not have to be initialized with any accurate measurements of the parameters.

In order to verify the quality of the calibration results, we presented a measure based on how

well each of the parameters are constrained by the data. Chapter 7 discusses two topics of

interest in object-specific pose recognition: extracting stable and discriminable features, and

induced-set pose extraction using a novel voting-based method that maps image features to

pose hypotheses. It presented an automated data gathering method that allows a statistical

analysis of object feature distribution on the surface. The power of the induced-set method

is that pose hypotheses can be easily generated from any image. Furthermore, the pose

verification function be learned from training data, providing a way to automatically set

thresholds and weights. Results were shown on a very difficult industrial manipulation scene

and we proved millimeter accuracy of the pose. Chapter A discussed the OpenRAVE archi-

tecture and the design decisions that allowed it to become a stable and reliable platform.

OpenRAVE consists of a core that provides a safe environment for users, and a interface API

that allows users to expand on the functionality without having to recompile the base code.

OpenRAVE provides many key technologies that allow successful manipulation execution

with real robotics, some of the most critical ones like padding and jittering were discussed

in detail.

The specific contributions of the thesis are:

• A small set of manipulation planning algorithms based on the efficient search properties

of the Rapidly-exploring Random Trees formulation. These algorithms allow grasp

planning, mobile manipulation planning, and planning with a gripper camera. Chapter

3.

• A planning knowledge-base that identifies frequently used information in the planners

and caches its results in a database. The database allows components to track their

computational dependencies, which makes it easy to keep track of what needs to be

recomputed when the robot and task specifications change. We showed how to use all

this information to quickly plan for paths. Chapter 4.

• An algorithm named ikfast that solves the analytic inverse kinematics equations of

common kinematics. Unlike other proposed methods based on advanced mathematics,

ikfast searches for the most computationally efficient and numerically stable solution.

It can easily handle all degenerate cases. Section 4.1.

• Several grasping analyses for force-closure and caging grasps that can be used directly

in manipulation. For force-closure grasps, we presented a grasp space parameterization

method and a new repeatability measure evaluation for pruning fragile grasps. For

caging grasp sets, we showed how to expand the possible ways to grasp doors to allow

manipulators of low DOF to easily achieve their tasks. Section 4.2.

• A 6D kinematics reachability formulation that allows for informative samplers and an

inverse reachability map for computing distribution of base placements. This formula-

tion was the basis for a new map which we call grasp reachability that combines grasp

sets and base placement distribution for a simple way of determining where a robot

should be placed to grasp an object. Sections 4.3, 4.4, 4.5.

• Motivated the usage of convex decompositions for padding the robot for safely moving

across the environment, pruning range data, and computing a new distance metric

based on the swept volumes of the robot links. Section 4.6.

• A general goal configuration generator that uses the planning knowledge-base to quickly

analyze the scene and seed planners with possible goal that help achieve the task. We

showed that goal generators have the most impact in a planning algorithm, and have

turned the bulk of the manipulation planning research into quickly computing the goal

space. Section 3.1.

• Algorithms that can quickly sample robot configurations so attached sensors clearly see

the target objects of the task. We presented a data-driven object detectability extents

model that allows a robot to know what regions of the object are detectable. We also

presented a two-stage method of first viewing the object with a gripper camera before

attempting to grasp it, we argued that this method is as fast as regular grasp planning.

Sections 5.1, 5.2.

• A simple visual feedback method that uses the visibility of the object while simulta-

neously choosing the best grasp for that object. This allows the robot to compensate

for big rotations of the object. Section 5.3.

• A completely automated extrinsic camera calibration method using the planning and

visibility sampling theories developed in the manipulation framework. We also pre-

sented a new method of computing the confidence on the gathered data so a robot can

determine when to stop gathering data. Chapter 6.

• For vision-based object analysis, we presented an feature-surface statistical analysis

method to extract stable and discriminable features and be able to generate a set of

visual and geometric words for the object based on the feature detectors used. These

features can be used in any pose-extraction algorithm when determining what to track.

Section 7.2.

• For vision-based pose recognition, we presented a novel pose extraction algorithm that

directly maps image features to a set of pose hypotheses of the object. These hypotheses

are used in a RANSAC algorithm to compute poses from a bin of scattered metallic

objects. Section 7.3.

• The OpenRAVE environment that integrates all the components discussed in this

thesis. OpenRAVE allows really fast development of planning algorithms and provides

many organizational structures for the database and robot information. Appendix A.

• A set of general guidelines for defining the lowest level of manipulation autonomy.

Section 2.5.

Figure 8.1: The construction process can be treated as an offline compiler that converts the
specifications into run-time programs while optimizing the speed of its execution.

8.2 Future of Robotics: Robot-Task Compilers

One intriguing concept is to treat the manipulation construction process as a compiler that

takes in a domain language encoding the robot and task specifications, and outputs a system

of executable programs that will complete the task on the real robot (Figure 8.1). Such a

domain language will stray from the traditional Turning machine thinking of encoding one

execution pipeline, and instead become a high-level script that injects robot and task specific

information into a preset execution framework. Because compilation is an offline process,

any amount of computational power and simulation accuracy can be supplied to produce

the most reliable and fastest programs.

Just like traditional compilers leverage the structure of CPU architectures for optimiza-

tions, a robot-task compiler needs to leverage predictions about the physics world in order

to cache commonly occurring situations. Fortunately, engineers and scientists have created

very accurate models of how materials, friction, and dynamics work, so they can be used to

predict all possibilities of the environment and robot state in simulation without having to

execute a real robot. Just like traditional compilers can optimize the order of instructions to

hit cache lines, a robot-task compiler should make leverage the physics models to construct

the most efficient structures possible to make runtime robot execution fast and reliable. A

robot-task compiler can start to build up internal models of all possible scenarios a robot

can get into, which allows it to analyze the program as a whole and cache predictions about

states the robot can get into.

In this thesis, we have introduced and formulated a robot-task compiler as a construction

phase that builds knowledge-bases and converts a set of generic algorithms into algorithms for

the specific robot and task. Although the current structure is still in its infant stages, we have

thoroughly discussed many of the analyses required for reliable autonomous manipulation.

Future extensions of the robot-task compiler concept should first focus on a more formal

specification language to completely encode a pick-and-place task. Aggressive pursuit in

robot-task compilers has a potential to yield a new class of tools for programming complex

robotic manipulation programs.

Appendix A

OpenRAVE - The Open Robotics

Automation Virtual Environment

We present the OpenRAVE architecture used to supplement the theoretical contributions

of this thesis. OpenRAVE is an open-source cross-platform software architecture that is

targeted for real-world autonomous robot applications and includes a seamless integration

of simulation, visualization, planning algorithms, scripting environments, and control algo-

rithms. The narrative in this appendix focuses on the users of the manipulation framework

and guides them through understanding key advances in robotics architectures that allow

for easier implementation of manipulation programs. We discuss the organization of Open-

RAVE and why these choices were made in the context of users developing complex robotics

systems.

One of the challenges in developing real-world autonomous robots is the need for integrat-

ing and rigorously testing high-level motion planning, perception, and control algorithms.

Up to now, the thesis has covered the theory of algorithms and presented many results for

manipulation scenarios while conveniently skipping the architecture and implementation de-

tails. The quality of the research results directly reflects the quality of the implementation

of a system. It is necessary to develop a clean and consistent architecture that can easily

handle all manipulation processes described in Chapter 2 before any meaningful statements

can be made about automation.

We developed OpenRAVE with these general design goals:

• Have a plugin-based architecture that allows users to expand its functionality without

having to recompile the base code. Most functionality should be offered as plugins,

thus keeping the core as simple as possible.

209

• Offer many motion planning algorithm implementations that can be easily extended

to new tasks.

• Make it easy to debug components during run-time without having to recompile or

restart the entire system in order to prevent flushing of the in-memory environment

state.

• Allow the OpenRAVE core to be used as a simulation environment, as a high-level

scripting environment, as a kinematics and dynamics backend module for robot con-

trollers, or as a manipulation planning black box in a distributed robotics environment.

• Allow simple offline planning database generation, storage, and retrieval.

• Support a multi-threaded environment and allow easy parallelization of planners and

other functions with minimal synchronization required on the user side.

One of OpenRAVE’s strongest points when compared with other planning packages is

the idea of being able to apply algorithms to any scenario with very little modification.

Users of OpenRAVE can concentrate on the development of planning and scripting aspects

of a problem without having to explicitly manage the details of robot kinematics, dynamics,

collision detection, world updates, sensor modeling, and robot control.

We first start with the OpenRAVE core design and discuss the programming models

that become possible. Within the context of programming paradigms, we present a new

layer of functionality that all robotics architectures should implement that goes beyond the

basic kinematics, collision detection, and graphics interface requirements of classic robotics

libraries. OpenRAVE provides a set of interfaces that let users modify existing functions and

expand OpenRAVE-enabled modules without having to recompile OpenRAVE or deal with

messy monolithic code-bases. We go through each interface’s design and its usage within the

entire system. Furthermore, we discuss how OpenRAVE is used with real robotics systems

and motivate several key functions that make it possible for planning-enabled robots to work

consistently in a continuously changing and unpredictable environment. We conclude with

future work and other lessons learned in robotics architectures.

A.1 Architecture

Figure A.1 shows the interaction of the four major layers composing the architecture:

• Core Layer. The core is composed of a set of interface classes defining how plugins

share information, and it provides an environment interface that maintains a world

state, which serves as the gateway to all functions offered through OpenRAVE. The

Figure A.1: The OpenRAVE Architecture is composed of four major layers and is designed to be
used in four different ways.

global state manages the loaded plugins, multiple independent environments, and log-

ging. On the other hand, the environment combines collision checkers, viewers, physics

engines, the kinematic world, and all its interfaces into a coherent robotics world state.

• Plugins Layer. OpenRAVE is designed as a plugin-based architecture which allows

to create new components to continuously improve its original specifications. Each

plugin is an implementation of a standard interface that can be loaded dynamically

without the need of recompiling the core. Following this design, different kind of

plugins can be created such as sensors, planners, controllers or physics engines. The

core layer communicates with the hardware through the plugins using more appropriate

robotics packages such as Player [Gerkey et al (2001)] and Robot Operating System

(ROS) [Quigley et al (2009)]. Using plugins, any planning algorithm, robot control, or

sensing-based subsystem can be distributed and dynamically loaded at run-time; this

distributed nature frees developers from struggling with monolithic code-bases.

• Scripting Layer. OpenRAVE provides scripting environments for Python and Oc-

tave/Matlab. Python communicates with the core layer directly with in-memory calls,

making it extremely fast. On the other hand, the Octave/Matlab scripting protocol

send commands through TCP/IP, with a plugin offering a text server on the core side.

Scripting allows real-time modifications to any aspect of the environment without re-

quiring shutdown, making it ideal to testing new algorithms. The Python scripting is

so powerful, that most of the examples and demo code are offered through it. In fact,

users should treat the scripting language as an integral part of the entire system, not

as a replacement to the C++ API.

• Robot Database Layer. Implements the planning knowledge-base covered in Chap-

ter 4 and provides simple interfaces for its access and generation parameters. The

database itself mostly consists of kinematic, quasi-static, dynamic, and geometric anal-

yses of the robot and the task. If the robot is defined properly, then all these functions

should work out of the box.

The main API is coded in C++ using the Boost C++ libraries [Dawes et al (1998-

present)] as a really solid basis of low-level management and storage structures. The Boost

flavors of shared pointers allow object pointers to be safely reference counted in a heavily

multi-threaded environment. Shared pointers also allow handles and interfaces to be passed

to the user without having to every worry about the user calling upon invalid objects or un-

loaded shared objects. Furthermore, OpenRAVE uses functors and other abstracted objects

commonly seen in higher level languages to specify function pointers for sampling distri-

butions, event callbacks, setting robot configuration state, etc. The Boost-enabled design

makes the the C++ API really safe and reliable to use along with saving the users a lot of

trouble doing bookkeeping on their end. Furthermore, it allows the Resource Acquisition Is

Initialization (RAII) design pattern [Stroustrup (2001)] to be fully exploited allowing users

to ignore the complexities of multi-threaded resource management.

A.1.1 Environment

The OpenRAVE state is divided into a global state and an environment-dependent state. The

global state holds information common to all threads, all environments, and all interfaces.

The environment state holds information and settings just for the objects and interfaces

created in the environment. Environment states are independent from each other, whereas

global states affect everything. At initialization, every interface is branded to one specific

environment, thus making the environment the only way for it to create other interfaces and

query objects. The environment manages:

• creating, loading, and destroying kinematic bodies, robots, and interfaces,

• creating plugins and the interfaces offered through them,

• a single collision checker synchronizing with the current objects,

• a single physics engine synchronizing with the current objects,

• drawing/plotting simple shapes on the 3D environment, and

• triangulation of the user-specified parts of the scene.

Locking

Because OpenRAVE is a highly multi-threaded environment, the environment state like

bodies and loaded interfaces could be simultaneously accessed. In order to safely write or

read the state, a user has to lock the environment, which prevents any other process from

modifying the environment while the user is working. By using recursive locks, it allows a

lock to be locked as many times as needed within the same thread, greatly reducing the lock

management when a state changing function calls another state changing function. This

safety measure helps users by always guaranteeing the environment is locked when calling

global level environment functions like creating new bodies or loading scenes, regardless if the

user has locked it. However, directly accessing the bodies and robots is dangerous without

having the environment lock acquired.

Simulation Thread

Every environment has an internal time and a simulation thread directly attached to a physics

engine. The thread is always running in the background and periodically steps the simulation

time by a small delta for the physics engine and on all the simulation-enabled interfaces. By

default, the thread is always running and can always potentially modify the environment

state; therefore, users always need to explicitly lock the environment whenever playing with

the internal state like modifying bodies by setting joint values or link transformations. If

not careful, the controller or physics engine will overwrite them. By default, the simulation

thread just sets the object positions depending on their controller inputs, but a physics

engine can be attached to integrate velocities, accelerations, forces, and torques.

The simulation thread can feel like a nuisance at first, but its division of robot control

into control input computation and execution greatly helps users only concentrate on feeding

commands to the robot without worrying about the simulation loop. It also allows a world

update to happen in one one discrete time step.

Cloning

One of the strengths of OpenRAVE is in allowing multiple environments to work simul-

taneously in the same process. Environment cloning allows OpenRAVE to become truly

parallel by managing multiple environments and running simultaneous planners on top of

them. Because there is no shared state across the clone and the original environment, it is

not possible to use an interface created from one environment in another For example, if a

planner is created in one environment, it should be used only by objects in that environment.

It is not possible to set a planner to plan for objects belonging to a different environment.

This is because a planner will lock the environment and expect the objects it controls to be

exclusively under its control.

Because the environment state is very complex, the cloning process can control how

much of it gets transferred to the new clone. For example, all existing bodies and robots

can be cloned, their attached controllers can be cloned, the attached viewer can be cloned,

the collision checker state can be cloned, and the simulation state can be cloned. Basically

the clone should be able to perform any operations that can be done with the original

environment without any modification in the input parameters.

When cloning real robots, one extremely important feature that OpenRAVE cloning

offers is the ability to maintain a real-time view of the world that sensors continuously

update with new information. When a planner is instantiated, it should make a copy of the

environment that it can exclusively control without interfering with the updating operations.

Furthermore, the real-world environment possibly has robot controllers connected to real

robots, having a clone gives the ability to set simulation controllers guarantees robot safety

while planning; commands from a cloned environment would not accidentally send commands

to the real robot.

A.1.2 Validating Plugins

Every plugin needs to export several functions to notify the core what interfaces it has and

to instantiate the interfaces. When a plugin is first loaded, it is validated by the environment

and its interface information is queried so the core can register the names.

There are many mechanisms in the validation process to prevent old plugins to be loaded

by the core. OpenRAVE is updated frequently and all user plugins are not necessarily

re-compiled when the OpenRAVE API changes. Therefore, we will encounter many cases

when a plugin exports the correct functions, but does not implement the correct API. Using

interfaces from plugins compiled with a mismatching The API can lead to unexpected crashes

that are very difficult to debug, so it is absolutely necessary to detect this condition. One

possible solution is to add version numbers to the API to enforce checking before an interface

is returned from the plugin to the environment, but this method is brittle. It forces to

keep track of a version number for every interface along with a global version number.

Furthermore, every developer has to remember to increment the version when something

even small changes, which can be easily forgotten and lead to serious errors later on.

We solve interface validation by computing a unique hash of the interface functions and

members by running each interface through a C++ lexer, gathering the tokens that affect

the C++ code structure, and then creating a 128bit unique MD5 hash. We create a hash

for each interface definition and the environment. The hashes are hard coded into the C++

header files and can be queried by two methods: a static function returning the hash of the

program calling the function, and a virtual function returning the hash the interface was

compiled with. An interface is only valid if its virtual hash is equivalent to the static hash of

the core environment. For a plugin to be loaded correctly, first the environment hashes have

to match. If they do, then the individual interfaces checked and only matching interfaces are

returned to the core, and from there dispatched to other plugins. Such consistency checks

ensure that stale plugins will never be loaded.

A.1.3 Parallel Execution

Being able to execute a planner in multiple threads is important for applications that re-

quire speed and solution quality Because there is always a trade-off between solution quality

and time of computation, some applications like industrial robots require the quickest and

smoothest past to their destinations. Fortunately, environment cloning allows planners to

create an independent environment for every thread they create, which enables them to call

kinematics and collision functions in each respective thread without worrying about data

corruption. Growing an RRT tree in a multi-threaded environment just requires one copy of

the kd-tree structure to be maintained. The query operations mostly work with Euclidean

distance on the configuration space, so are really fast. Furthermore, adding a new point

takes O(log) time, so it shouldn’t be a bottleneck in the search process compared to collision

checking. Finally, environment locking allows threads to gain exclusive access to the envi-

ronment. The rule of thumb is that any interface belonging or added to the environment

requires an environment lock before any of its methods can be called.

A.1.4 Exception and Fault Handling

By using the C++ Standard and Boost libraries, OpenRAVE can recover from almost all

errors that a user can experience without causing the program to shutdown on the spot.

Invalid pointer and out-of-range accesses are extremely dangerous because they can modify

unrelated memory, which causes the program to crash at a place completely unrelated to the

root cause of the problem. Avoiding such problems has been one of the the highest priorities

for the design. The core always surrounds any user code coming from plugins and callbacks

with try/catch blocks, this allows the core to properly handle the error and notify the user

of a problem without tearing down the environment. Because exception handling is slow,

there is a fine balance of when a function should return an error code and what it should

throw an exception. In OpenRAVE, exceptions should never occur in normal operation

of the program, they should only be for unexpected events of the program. For example,

planners failing is an expected event dependent on the current environment, so planners

should return an error code with the cause of the failure rather than throw an exception. In

other words, exceptions convey the structural errors of the program that point to places in

the code that should be fixed by the user. The following operations should throw exceptions

in OpenRAVE:

• invalid plugin or interface hashes,

• invalid commands being sent to interfaces,

• invalid arguments passed to functions,

• invalid pointers or out-of-range parts of lists are accessed,

• environment is not locked when it should be

• a resource is present when it should be,

• a math operation is not consistent with the rest of the environment,

• environment naming constraints are not maintained,

• unrecognized enumerated types are given, and

• instantiation order is not maintained.

A.1.5 Hashes for Body Structure

A new concept that came out of OpenRAVE is the idea of creating unique hashes of a body’s

structure. Every body has an online state that includes:

• names of the body, its links, its joints,

• link transformations, velocities, and accelerations in the world,

• and attached bodies.

All other information is independent of the environment and can be categorized into the

kinematics, geometry, and dynamics of the body. Furthermore, robots have categories for

attached sensors and manipulators. The planning knowledge-base stores all cached informa-

tion about a body and a robot, so it needs an consistent way of indexing this information.

Indexing by robot names is not reliable because it is very difficult to remind a user to change

the name every time the body structure is changed. Therefore, OpenRAVE provides func-

tionality to serialize the different categories of a body and create a 128-bit MD5 hash. Each

of the models in the planning knowledge-base relies on different categories of the robot. For

example:

• inverse kinematics generation only uses the kinematics of a sub-chain of the robot

defined by the manipulator and the grasp coordinate system,

• kinematic reachability cares about the robot geometry of the manipulator because it

implicitly stores self-collision results,

• inverse reachability further uses the links connecting the base robot link to the base

manipulator link,

• grasping cares about the geometry of the target body and the kinematics and geometry

of the gripper,

• convex decompositions only care about the link geometry, and

• inverse dynamics cares only about the dynamics properties of each link and the kine-

matics.

There are several challenges to developing a consistent index across all operating systems

and compilers since floating point errors could creep in when normalizing floating-point

values. However, the idea of such an index could greatly help in developing a worldwide

robot database that anyone can use.

A.2 Interfaces

An interface is the base element from which every possible way to expand OpenRAVE

functionality is derived from. An interface always comes from a plugin and is owned by an

environment. Each of the interface types attempt to package a closed set of functions that

are commonly used in robotics architectures. However, it is impossible to predict what all

users need and how technology will evolve, so each interface provides a flexible way to receive

commends from users in the form of streams. Each stream first starts with a command name

and then specifies arguments, much like a function call or remote procedure call, except the

stream does not enforce any format requirements. Furthermore, each interface can contain

extra annotations for holding parameters or other configuration-specific information. This

allows users to set parameters in an XML file for initializing the interface. The interfaces

themselves manage all the low-level library and plugin information, so users are guaranteed

the interface will be always valid as long as its reference is held.

A.2.1 Kinematics Body Interface

Each kinematics body can be thought of as the base geometric object in OpenRAVE. It is

composed of a collection of rigid-body links connected with joints. The kinematics are a

graph of joints and links, there is no enforced hierarchy. The basic body provides:

• setting and getting joint values,

• setting and getting the transformations of all links,

• getting the velocities of each joint or link,

• self collision detection functions,

• kinematic hierarchy querying - The underlying structure of kinematics body is a list

of links, not a tree. However, after some careful analysis, the parent and child links of

a particular link can be extracted.

• jacobian computation - both translational and rotational,

• attaching bodies online - a necessary function for grasp planning; for example, an

object is rigidly grasped by a hand requires the collision bodies to be attached, and

• exploring its kinematics structure.

A.2.2 Robot Interface

A robot is a special type of kinematics body that needs higher level functionality for its

control and movement in the environment and its interaction with other objects. The extra

functions are:

• Manipulator - Every robot supports a list of manipulators that describe the links the

robot should use when manipulating parts of the environment. Usually manipulators

are serial chains with a Base link and an End Effector link. Each manipulator is also

decomposed into two parts: the arm and the hand. The hand usually makes contact

with the objects while the arm transfers the hand to its destination. The manipulator

class also has an optional pointer to an inverse kinematics solver providing inverse

kinematics functionality.

• Active Degrees of Freedom - When controlling and planning for a robot, it is

possible to set the degrees of freedom that should be used. For example, consider

planning with a humanoid robot. There should be in easy way to specify to the

planners that only the planning configuration space consists of only the right arm

while keeping the rest of the joints the same. Or consider the case where we care about

navigation of the humanoid robot. Here we would want to control the translation of

the robot on the plane and its orientation. Perhaps we want to do footstep planning

Figure A.2: Distance queries.

and also care about controlling the two legs. All this is possible with the active degrees

of freedom feature provided by OpenRAVE.

• Grabbing bodies - It is possible for a robot to attach a kinematics body onto one

of its links so that when the link moves, the body also moves. Because collision

detection will stop being checked between the robot and the body, you could say that

the body becomes a part of the robot temporarily. This functionality is necessary for

manipulation planning. Whenever the robot is carrying a body, all collisions between

the robot and that item should be ignored once the body has been grasped.

• Attached Sensor - Can attach any number of sensors to the robot’s links. The sensor

transformations will be completely owned by the robot. Whenever the robot link is

updated, the sensor will be automatically moved to the new location.

A.2.3 Collision Checker Interface

A collision checker interface can be set for every environment, which has the checker pro-

gressively synchronize its internal world with the OpenRAVE world. The interface provides

a wide range of collision and proximity testing functions along with testing primitives like

rays. All collisions functions take in a collision report, which can fill in extra information

about contact points, number of collisions, and collided links. OpenRAVE offers a set of

global options to set the state of the collision checker. For example, it is possible to request

more precise computationally intensive information like distance to obstacles (Figure A.2),

but such an option is not turned on as default. New collision checkers can be easily set

onto an existing environment by a single function call, making collision checker performance

Figure A.3: Physics simulations.

comparison very simple. In fact, this allows bugs to be caught between collision checkers

because a user can quickly set another checker to confirm the behavior.

A.2.4 Physics Engine Interface

Similar to collision checkers, a physics engine can be set for the environment to correctly

move the objects in the simulation thread (Figure A.3). Physics engines allow objects to

maintain a velocity and acceleration and similarly maintain a separate internal world to the

openrave world. The physics engine only modifies the state of the world inside the simulation

time step.

A.2.5 Controller Interface

In order to control certain robot hardware within the OpenRAVE environment, a controller

interface communicating with the hardware-specific libraries is created and attached onto an

existing robot. All commands given to move the robot should be sent through the controller.

The default format for a command is a timed trajectory of joint values, velocities, and

expected torques that the robot is expected to hit. Just like physics engines, a controller

based on simulation results should update the robot during the simulation step. If a controller

is based on a real hardware, it should always lock the environment and update the robot

with the current encoder values. The controller interface allows the user to query the current

state of the robot and its completion of the commands sent.

A.2.6 Inverse Kinematics Interface

Each inverse kinematics solver is defined on a subset of joints of a robot specified by the

manipulator. Given the position in the workspace that an end effector should go to, an

inverse kinematics solver should find the joint configuration to take that end-effector there.

Because it is common for a solution to have a null space, the solver exposes functions that

can query the null space for a particular solution or all solutions. Several parameterizations

of the workspace goal are supported:

• 6D pose - translation and rotation defining the full coordinate system of the end-

effector.

• 3D translation - end-effector should hit a particular point

• 3D rotation - end-effector rotation,

• 3D look at direction - a defined direction on the end-effector coordinate system

should look at a point.

• 4D ray - a defined ray on the end-effector should align with a destination ray.

Each of these parameterizations is important in manipulation and other workspace anal-

yses. Furthermore, the actual inverse kinematics querying can support several checks before

a solution is really considered valid:

• Environment Collisions - Will check environment collisions with the robot,

• Self Collisions - Will check the self-collision of the robot,

• Joint Limits - Will check the joint limits of the robot,

• Custom Filter - Will use a custom function provided by the user to validate or modify

the solution.

A.2.7 Planner Interface

In OpenRAVE, the basic purpose of a planner is to find a path starting at some initial

configuration that reaches a goal condition while satisfying problem-specific constraints. All

planners are assumed to be geometric in nature, so that they can be adapted to different

situations. In order to quantify all the possible parameterizations and configurations of a

planner, OpenRAVE introduces a planner parameters structure that holds everything

specific to the problem. The planning algorithm itself should hold everything specific to

the search process of the configuration space defined by the planner parameters. As

default behavior, planners plan for robots and they use the robot’s active degrees of freedom

for the configuration space; however, the planner parameters structure can easily define a

new configuration space of the robot that is independent of the robot. This gives the user

flexibility in choosing the configuration space. The usage of a planner is simple:

1. Acquire a planner pointer from environment.

2. Fill a planner parameters structure defining the instance of the problem. The struc-

ture has many fields for describing planning entities like start position, goal condition,

and the distance metric. Try to use these fields as much as possible. Later on, this will

allow users to easily swap planners without having to change the parameters structure

much.

3. Initialize the planner using the robot and planner parameters. This also resets any

previous information the planner had stored.

4. Plan for a path passing in a trajectory pointer for the output. If the function returns

true, then the trajectory will be filled with the geometric solution in the active DOF

configuration space of the robot. It is possible to preserve the previous search space

for the planner if changing the goal conditions and reusing the previous computations.

Planning Parameters

All the information defining a planning problem should be specified in a planner parame-

ters structure, which attempts to cover most of the common data mentioned in Chapter 3.

The fields to set are:

• Cost Function - takes in a configuration and outputs a single value showing the cost

of being in this region.

• Goal Function - takes in a configuration and outputs a value showing proximity to

the goal.

• Distance Metric - distance between two configurations.

• Constraint Function - takes in a previous and new configuration and projects the new

configuration to satisfy problem specific constraints. Returns false if new configuration

should be rejected.

• Sample Function - Samples a random configuration for exploring the configuration

space.

• Sample Neighbor Function - Samples the neighborhood of an input configuration,

controls how far samples can be using the distance metric.

• Sample Goal Function - Samples a random goal configuration.

• Set/Get State Functions - Sets and gets the configuration state.

• State Difference Function - Used to find the difference between two states. This

function properly takes into account identifications for joints without any limits.

• Goal Configurations - Explicit seeding of the goal configurations when initializing

the planner.

• Lower/Upper Limits - Very rough limits of each DOF of the configuration space

used to normalize sampling and verify configurations.

• Resolution - The resolution to check line collisions and used for other discretization

factors dependent on the space.

• Step Length - The step length for discretizing the configuration space when searching.

• Max Iterations/Time - Controls the maximum number of iterations or time that

the planners should compute until it gives up.

• Path Optimization Parameters - Special parameters that will be used in post-

processing the output paths to smooth them of any irregularities.

• Check Self Collisions - If the planner should check self-collisions of the robot for

every configuration. Some configuration spaces, like navigation, might not modify the

internal joints of the robot, so this step could speed up planning.

However there are many different types of inputs to a planner, so it is impossible to cover

everything with one class. Therefore, planner parameters has a very flexible and safe way

to extend its parameters without destroying compatibility with a particular planner or user of

the planner. This is enabled by the serialization to XML. Using XML as a medium, it is easy

to exchange data across different derivations of planner parameters without much effort

or incompatibilities. Because of these serialization capabilities, it becomes possible to pass

in the planner problem across the network or a different thread. Furthermore, a base planner

can read in any XML structure and ignore the fields that it does not recognize, meaning

that users can re-use old planners without having to tune their parameters structures.

Path Optimization

Path smoothing/optimization is regarded as a post-processing step to planners. Path opti-

mization algorithms take in an existing trajectory and filter it using the existing constraints

of the planner. In fact, functionality there is no difference between a path optimization plan-

ner and a regular planner besides the fact that a trajectory is used as input. Because a

planner already has a trajectory as an argument to its plan path method, supporting path

optimization does not cause any major API changes to the infrastructure.

The planner parameters structure reflects what optimization algorithm to use for post

processing the trajectory. By default, this is the linear shortcut method; however, many

Figure A.4: Several simulated sensors.

different optimization algorithms exist, each with their own sets of parameters.

This type of planner post-processing actually allows users to chain planners in the same

way that filters are chained for sensing data. Of course, users can continue to smooth in

planners without relying on this framework. However, explicit control of path smoothing

allows custom parameters to be easily specified.

A.2.8 Trajectory Interface

A trajectory is a path between a set of configuration space points that can be annotated

with velocities, accelerations, expected torques, and the affine transformation of the robot.

The OpenRAVE trajectory class supports several interpolation methods and provides users

with an easy interface to query the values along a trajectory to feed into a controller.

A.2.9 Sensor Interface

A sensor measures physical properties from the environment and converts them to data.

Each sensor is associated with a particular position in space, has a geometry with properties

defining the type of sensor, and can be queried for sensor data. Similar to Player [Gerkey

et al (2001)], OpenRAVE attempts to hard code the interfaces to the sensors so that users

have a simpler time inter-operating with each other. Figure A.4 shows some of the simulated

laser types provided.

A.2.10 Sensor System Interface

When connecting OpenRAVE to a perception system, several outside modules will start

populating the environment with their own sensor measurements. Working with a real

perception system is very difficult because as soon as some obstacle blocks the sensor, the

Figure A.5: Simple functions a viewer should support.

system would not be able to perceive the target object anymore and might decide to remove

it from the environment. The sensor system interface allows control of what objects should

be released from the control of the perception system, what objects should be locked so the

system cannot destroy them, and what objects should be destroyed. Every kinematics body

has a structure that specifically manages the state for the object and allows planners and

other systems to mark objects as being used, so they shouldn’t be deleted. Furthermore, as

a robot grasps an object, the perception system should completely release it or hand it over

to a new perception system because the object’s state is now controlled by the gripper.

A.2.11 Viewer Interface

Viewer is responsible for showing the current state of its attached environment. Because

OpenRAVE is a scripting-oriented environment, not much functionality is expected from

viewers beyond being able to render the objects, plot simple primitives, and move objects

around the environment (Figure A.5). Each viewer should support a set of geometric prim-

itive plotting functions to allow users to annotate their scene with meaningful information

about their task. In fact by adding too much functions to a viewer, users might get the

wrong impression that a viewer is the recommended way to interact with the OpenRAVE

world, which is the wrong message. It is much more critical to keep exposed functionality to

a minimum in order to speed up rendering and not have to maintain too much unnecessary

code.

A.2.12 Modular Problem Interface

The modular problem interface represents a chunk of code that a user would want to execute

in the context of the OpenRAVE environment to control a demo or expand functionality.

Each modular problem provides a main function that is executed when the problem is loaded

into the environment. Furthermore, the problem has access to the internal simulation thread

so it can define its own dynamics behaviors. A lot of problems wrap up planners and other

neat little functions and provide their functionality as string commands supported through

the base interface class. For example a popular modular problem interface is the BaseMa-

nipulation problem. At startup, users instantiate it with the name of the robot that the

base manipulation should control. One of the functions it offers is to move the end effector

of a manipulator on the robot to a specified location. The BaseManipulation problem

offers a command that accepts a set of 6D positions of the end effector, calls their inverse

kinematics, creates the necessary goal samplers, and calls a default randomized planners to

find a path.

As OpenRAVE grows into a more mature environment, users will always find the need for

new interfaces and new functionality. By supporting a generic modular problem interface, it

allows users to quickly code up their ideas and show a proof of concept without being bound

by the specific interfaces.

A.3 Working with Real Robots

Running planners on real robots doesn’t always go as smoothly as in simulation. The prob-

lems occur because the real robot joint values are used to set the environment joint values,

which means that the robot can initially start in environment or self collision. Furthermore,

there are always errors in the robot localization, environment modeling, and perception sys-

tem, so executing non-collision path could potentially graze obstacles or the target object

along the way. In practice, such errors are fatal to the application and execution of any

planning algorithm. Fortunately, experience has provided with two very effective ad hoc

methods to resolve almost all of these problems: padding and jittering. Although we spent

little time on them in the manipulation planning sections, they can easily turn in a 5%

success rate of task completion into 100%. Any OpenRAVE planners use these two the full

extent.

A.3.1 Padding

Obstacles and the robot need to be padded with at least 5mm-10mm around the surface

before computing collision queries. Section 4.6.1 motivated the use of convex decompositions

for uniformly padding the surfaces. However, padding cannot be applied all the time in all

situations. Because joint encoders are very accurate, checking self-collisions with a padded

mesh is meaningless most of the time; in fact, it could cause the robot to get into random

collisions that can affect the feasibility of the plan.

In this thesis we spent a great deal of effort showing why target objects should be treated

differently from obstacles the robot is trying to avoid; the robot actually needs to get close

and make contact with the targets. If making grasp sets with a padding object, it could

cause the robot to hallucinate contact points that don’t exist in reality, which could yield

very bad grasps. The objects should be their original size when creating grasp tables and

approaching the final grasp to the target object. Therefore, padded objects should be used

only when avoiding them is clearly the goal of the plan. The target object should be padded

only in the first stage of grasp planning (Section 3.3) where the gripper gets close, but does

not approach the target. Sampling visibility should also work with the original objects. Any

other situation requires obstacle be padded.

A.3.2 Jittering

The most effective way of moving the robot out of grazing environment or self collisions is

to randomly move the robot joints a small distance and see if the robot got out of collision.

Although many papers have been written on computing proximal distance and finding the

shortest path to get the robot out of collision, they tend to be slow. Furthermore, the straight

line in configuration space between the initial colliding configuration and a close non-colliding

configuration is usually a very good approximation of the shortest path to take. Jittering

first starts searching within a small ball of the current configuration and slowly increases

that ball until a reasonable maximum limit on the configuration distance is reached.

The distance metric presented in Section 4.6.3 becomes very important in determining

what joints affect more volume and what joints do not. By not having a well calibrated

distance metric, small steps in configuration space could move the base joint enough distance

to account for a 5mm-10mm jumps in the end effector. Such huge jumps will most likely

cross obstacles and really get the robot in trouble if it tries to move across the obstacles.

Therefore, we have to rely on a distance metric that takes into account the average swept

volume of each joint.

A.4 Discussion

OpenRAVE provides an environment for testing, developing, and deploying manipulation

planning algorithms in real-world autonomous manipulation applications. The biggest chal-

lenge is developing an integrated architecture that allows for rapid development, powerful

scripting, and the combination of many modules that inter-operate with many libraries. At-

tempting to support everything could spread an architecture thin and make it lose its value;

therefore, we make it easy to connect OpenRAVE to other systems through plugins. The plu-

gin architecture allows OpenRAVE to solely focus on geometric and kinematic the analyses.

This focus allows is to be easily integrated into existing robotics systems that concentrate

on other tasks like low-level control, message protocols, perception, and higher-level intelli-

gence systems. We covered the final OpenRAVE architecture and a lot of the decisions that

went into its design. OpenRAVE already supports a plethora of functions like environment

cloning, geometry hashes, planner parameters, advanced exception handling, and grabbing

bodies that other robotics architectures are just beginning to realize the importance of.

One of the earliest and best decisions when starting to develop OpenRAVE was to make

it open-source. Its open nature has allowed a community to flourish within it. Further-

more, a lot of the community has helped uncover many issues and bottlenecks with previous

OpenRAVE versions. This has allowed the architecture to naturally evolve as user demand

increased. In fact, not having such continuous feedback from a community of over a hundred

researchers would not have allowed OpenRAVE to grow so far and become as popular as it is

today. Because we believe in supporting commercial ventures, we release OpenRAVE code

in the GNU Lesser General Public License and the Apache License, Version 2.0. The core

is protected by the LGPL so we can keep track of changes where the hope is to maintain a

single OpenRAVE distribution that can satisfy everyone. The LGPL requires any changes

to the core to be made public if used in products. All scripts and examples and released

under the much less restrictive Apache License, so users have the freedom to modify it in

any way they want without any worry.

Many people have argued that releasing research prematurely as open-source could help

other parties take advantage of the work, which is beneficial for the original author. Such

statements completely miss the point of research and sharing information, and our hope

is that the success of OpenRAVE can show to the robotics community that sharing code

can greatly benefit the original author’s goals and spur more growth in the community.

Making code open source allows research to be used in many more places and gives it a lot

of exposure.

OpenRAVE will continue to be a community effort to organize manipulation planning

research. Eventually we hope to setup official planning benchmarks to easily test planning,

collision, physics, and other algorithms in the context of manipulation tasks.

References

Albu-Schaffer A, Haddadin S, Ott C, Stemmer A, Wimbock T, Hirzinger G (2007) The dlr lightweight
robot: design and control concepts for robots in human environments. Industrial Robot: An International
Journal 34(5):376–385

An CH, Atkeson CG, Hollerbach JM (1988) Model-Based Control of a Robot Manipulator. MIT Press,
Cambridge, Massachusetts

Ausubel J (2009) The population delusion: Ingenuity wins every time. New Scientist 203(2727):38–39

Baker C, Ferguson D, Dolan J (2008) Robust mission execution for autonomous urban driving. In: 10th
International Conference on Intelligent Autonomous Systems

Barrett-Technologies (1990-present) Barrett whole arm manipulator. URL http://www.barrett.com

Bay H, Ess A, Tuytelaars T, Gool LV (2008) Surf: Speeded up robust features. Computer Vision and Image
Understanding (CVIU) 110(3):346–359

Belongie, Serge (1999-present) Rodrigues’ rotation formula. URL http://mathworld.wolfram.com/

RodriguesRotationFormula.html

Berenson D, Diankov R, Nishiwaki K, Kagami S, Kuffner J (2007) Grasp planning in complex scenes. In:
Proceedings of IEEE-RAS International Conference on Humanoid Robots (Humanoids)

Berenson D, Srinivasa S, Ferguson D, , Kuffner J (2009a) Manipulator path planning on constraint manifolds.
In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Berenson D, Srinivasa S, Ferguson D, Collet A, Kuffner J (2009b) Manipulator path planning with workspace
goal regions. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Bertram D, Kuffner J, Dillmann R, Asfour T (2006) An integrated approach to inverse kinematics and path
planning for redundant manipulators. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA)

Bolles RC, Horaud P, Hannah MJ (1983) 3dpo: A three-dimensional part orientation system. In: IJCAI, pp
1116–1120

229

http://www.barrett.com
http://mathworld.wolfram.com/RodriguesRotationFormula.html
http://mathworld.wolfram.com/RodriguesRotationFormula.html

Borgefors G, Strand R (2005) An approximation of the maximal inscribed convex set of a digital object. In:
Image Analysis and Processing ICIAP

Bouguet JY (2002) http://www.vision.caltech.edu/bouguetj/calibdoc

Bradski G, Kaehler A (2008) Learning OpenCV. O’Reilly Media Inc.

Brock O, Kuffner J, Xiao J (2008) Motion for manipulation tasks. Handbook of Robotics (O Khatib and B
Siciliano, Eds)

Cameron S (1985) A study of the clash detection problem in robotics. In: In Int. Conf. Robotics Automation,
pp 488–493

Chestnutt J (2007) Navigation planning for legged robots. PhD thesis, Robotics Institute, Carnegie Mellon
University

Chestnutt J, Michel P, Nishiwaki K, Kuffner J, Kagami S (2006) An intelligent joystick for biped control. In:
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Chew LP, Kedem K (1993) A convex polygon among polygonal obstacles: Placement and high-clearance motion.
Computational Geometry: Theory and Applications 3(2):59–89

Chia KW, Cheok AD, Prince S (2002) Online 6 dof augmented reality registration from natural features. In:
Proc. of the Intl. Symp. on Mixed and Augmented Reality (ISMAR)

Chum O (2005) Two-view geometry estimation by random sample and consensus. PhD thesis, Czech Technical
University

Ciocarlie M, Goldfeder C, Allen P (2007) Dimensionality reduction for hand-independent dexterous robotic
grasping. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS)

Ciocarlie MT, Allen PK (2009) Hand posture subspaces for dexterous robotic grasping. Int J Rob Res 28(7):851–
867

Curless B, Curless B, Curless B, Curless B, Levoy M, Levoy M, Levoy M, Levoy M (1995) Better optical
triangulation through spacetime analysis. In: In ICCV, pp 987–994

Datta A, Kim J, Kanade T (2009) Accurate camera calibration using iterative refinement of control points. In:
Workshop on Visual Surveillance (VS), 2009 (held in conjunction with ICCV).

David P, DeMenthon D (2005) Object recognition in high clutter images using line features. In: International
Conference on Computer Vision (ICCV)

David P, Dementhon D, Duraiswami R, Samet H (2004) SoftPOSIT: Simultaneous pose and correspondence
determination. International Journal of Computer Vision 59(3):259–284

Dawes B, Abraham D, Rivera R (1998-present) Boost c++ libraries. URL http://www.boost.org/

http://www.boost.org/

Diankov R, Kuffner J (2007) Randomized statistical path planning. In: Proceedings of the IEEE International
Conference on Intelligent Robots and Systems (IROS)

Diankov R, Kuffner J (2008) Openrave: A planning architecture for autonomous robotics. Tech. Rep. CMU-
RI-TR-08-34, Robotics Institute, URL http://openrave.programmingvision.com

Diankov R, Ratliff N, Ferguson D, Srinivasa S, Kuffner J (2008a) Bispace planning: Concurrent multi-space
exploration. In: Proceedings of Robotics: Science and Systems (RSS)

Diankov R, Srinivasa S, Ferguson D, Kuffner J (2008b) Manipulation planning with caging grasps. In: Pro-
ceedings of IEEE-RAS International Conference on Humanoid Robots (Humanoids)

Diankov R, Kanade T, Kuffner J (2009) Integrating grasp planning and visual feedback for reliable manipulation.
In: Proceedings of IEEE-RAS International Conference on Humanoid Robots (Humanoids)

Divvala SK, Hoiem D, Hays JH, Efros AA, Hebert M (2009) An empirical study of context in object detection.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Drake SH (1989) Using compliance in lieu of sensory feedback for automatic assembly. PhD thesis, Department
of Mechanical Engineering, Massachusetts Institute of Technology

Dupont L, Hemmer M, Petitjean S, Schömer E (2007) Complete, exact and efficient implementation for com-
puting the adjacency graph of an arrangement of quadrics. In: ESA’07: Proceedings of the 15th annual
European conference on Algorithms, pp 633–644

Eberly D (2001) Intersection of convex objects: The method of separating axes. Tech. rep., Geometric Tools,
LLC, URL http://www.geometrictools.com/

Escande A, Miossec S, Kheddar A (2007) Continuous gradient proximity distance for humanoids free-collision
optimized-postures. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids)

Exact-Dynamics-BV (1991-present) Manus arm. URL http://www.exactdynamics.nl

Ferguson D (2006) Single Agent and Multi-agent Path Planning in Unknown and Dynamic Environments. PhD
thesis, Carnegie Mellon University

Ferguson D, Stentz A (2004) Delayed D*: The Proofs. Tech. Rep. CMU-RI-TR-04-51, Carnegie Mellon Robotics
Institute

Ferguson D, Stentz A (2005) The Field D* Algorithm for Improved Path Planning and Replanning in Uniform
and Non-uniform Cost Environments. Tech. Rep. CMU-RI-TR-05-19, Carnegie Mellon School of Computer
Science

Ferguson D, Stentz A (2006) Anytime RRTs. In: Proceedings of the IEEE International Conference on Intelli-
gent Robots and Systems (IROS)

http://openrave.programmingvision.com
http://www.geometrictools.com/
http://www.exactdynamics.nl

Fikes R, Nilsson N (1971) Strips: a new approach to the application of theorem proving to problem solving.
Artificial Intelligence 2:189–208

Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications of the ACM 24(6):381–395

Gerkey B, Vaughan RT, Stoy K, Howard A, Sukhatme GS, Mataric MJ (2001) Most Valuable Player: A Robot
Device Server for Distributed Control. In: Proceedings of the IEEE International Conference on Intelligent
Robots and Systems (IROS)

Goad C (1983) Special purpose, automatic programming for 3d model-based vision. Proc DARPA Image Un-
derstanding Workshop

Goerick C, Bolder B, Janssen H, Gienger M, Sugiura H, Dunn M, Mikhailova I, Rodemann T, Wersing H,
Kirstein S (2007) Towards incremental hierarchical behavior generation for humanoids export. In: Proceed-
ings of IEEE-RAS International Conference on Humanoid Robots (Humanoids)

Gold S, Rangarajan A, ping Lu C, Pappu S, Mjolsness E (1998) New algorithms for 2d and 3d point matching:
Pose estimation and correspondence. Pattern Recognition 31(8):1019–1031

Goldfeder C, Allen P, Lackner C, Pelossof R (2007) Grasp planning via decomposition trees. In: Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA)

Gordon I, Lowe D (2006) What and where: 3d object recognition with accurate pose. In: Toward Category-Level
Object Recognition, pp 67–82

Gorski KM, Hivon E, Banday AJ, Wandelt BD, Hansen FK, Reinecke M, Bartelmann M (2005) HEALPix:
a framework for high-resolution discretization and fast analysis of data distributed on the sphere. The
Astrophysical Journal 622:759–771

Gravot F, Haneda A, Okada K, Inaba M (2006) Cooking for humanoid robot, a task that needs symbolic and
geometric reasonings. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA)

Gremban KD, Ikeuchi K (1993) Appearance-based vision and the automatic generation of object recognition
programs. In: Three-Dimensional Object Recognition Systems, Elsevier Science Publishers, B.V.

Gremban KD, Ikeuchi K (1994) Planning multiple observations for object recognition. International Journal of
Computer Vision 12(1):137–172

Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. Tech. Rep. 7694, California Institute
of Technology, URL http://authors.library.caltech.edu/7694

Grimson W, Lozano- Perez T (1985) Recognition and localization of overlapping parts from sparse data in two
and three dimensions. In: IEEE Conf. on Robotics and Automation, pp 61–66

Gu L, Kanade T (2008) A generative shape regularization model for robust face alignment. In: Proceedings of
The 10th European Conference on Computer Vision

http://authors.library.caltech.edu/7694

Harada K, Morisawa M, Miura K, Nakaoka S, Fujiwara K, Kaneko K, Kajita S (2008) Kinodynamic gait
planning for full-body humanoid robots. In: Proceedings of the IEEE International Conference on Intelligent
Robots and Systems (IROS)

Haralick BM, Lee CN, Ottenberg K, Nolle M (1994) Review and analysis of solutions of the three point
perspective pose estimation problem. International Journal of Computer Vision 13(3):331–356

Hartley R, Zisserman A (2000) Multiple View Geometry in Computer Vision. Cambridge University Press

Hauser K, Ng-Thow-Hing V (2010) Fast smoothing of manipulator trajectories using optimal bounded-
acceleration shortcuts. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA)

Hauser K, Bretl T, Latombe J (2008) Motion planning for legged robots on varied terrain. International Journal
of Robotics Research 27(11-12):1325–1349

Hollinger G, Ferguson D, Srinivasa S, Singh S (2009) Combining search and action for mobile robots. In:
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Ihler A, Mandel M (2003) http://www.ics.uci.edu/ ihler/code

III FLH, Shimada K (2009) Morphological optimization of kinematically redundant manipulators using weighted
isotropy measures. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA)

Jain A, Kemp CC (2008) Behaviors for robust door opening and doorway traversal with a force-sensing mobile
manipulator. In: Proceedings of the Manipulation Workshop in Robotics Science And Systems

Kadir T, Zisserman A, Brady M (2004) An affine invariant salient region detector. In: In Proc of the 8th
European Conference on Computer Vision, pp 345–457

Kaneko K, Kanehiro F, Kajita S, Hirukawa H, Kawasaki T, Hirata M, Akachi K, Isozumi T (2004) Humanoid
robot hrp-2. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Kazemi M, Gupta K, Mehrandezh M (2009) Global path planning for robust visual servoing in complex envi-
ronments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Kim DJ, Lovelett R, Behal A (2009) Eye-in-hand stereo visual servoing of an assistive robot arm in unstructured
environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Kim YJ, Varadhan G, Lin MC, Manocha D (2003) Fast swept volume approximation of complex polyhedral
models. In: ACM Symposium on Solid Modeling and Applications

Knuth DE (1973) Fundamental Algorithms, The Art of Computer Programming, vol 1, 2nd edn. Addison-
Wesley

Kojima M, Okada K, Inaba M (2008) Manipulation and recognition of objects incorporating joints by a hu-
manoid robot for daily assistive tasks. In: Proceedings of the IEEE International Conference on Intelligent
Robots and Systems (IROS)

Kragic D, Miller AT, Allen PK (2001) Real-time tracking meets online grasp planning. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA)

Kuffner J, LaValle S (2000) RRT-Connect: An Efficient Approach to Single-Query Path Planning. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Kuffner J, Nishiwaki K, Kagami S, Inaba M, Inoue H (2003) Motion planning for humanoid robots. In: Pro-
ceedings of the International Symposium on Robotics Research (ISRR)

LaValle S (2006) Planning Algorithms. Cambridge University Press (also available at
http://msl.cs.uiuc.edu/planning/)

LaValle S, Kuffner J (2000) Rapidly-exploring random trees: Progress and prospects. In: Robotics: The
Algorithmic Perspective. 4th Int’l Workshop on the Algorithmic Foundations of Robotics (WAFR)

LaValle S, Kuffner J (2001) Randomized kinodynamic planning. International Journal of Robotics Research
20(5):378–400

Lepetit V, Vacchetti L, Thalmann D, Fua P (2003) Fully automated and stable registration for augmented
reality applications. In: Proc. of the Intl. Symp. on Mixed and Augmented Reality (ISMAR)

Li Y, Gu L, Kanade T (2009) A robust shape model for multi-view car alignment. In: IEEE Conference on
Computer Vision and Pattern Recognition

Li Z, Canny J (1993) Nonholonomic Motion Planning. Kluwer, Boston, MA

Likhachev M, Ferguson D (2009) Planning long dynamically feasible maneuvers for autonomous vehicles. In-
ternational Journal of Robotics Research 28(8):933–945

Low KH, Dubey RN (1987) A comparative study of generalized coordinates for solving the inverse-kinematics
problem of a 6r robot manipulator. International Journal of Robotics Research 5(4):69–88

Lowe D (2004) Distinctive image features from scale-invariant keypoints. International Journal of Computer
Vision 60(2):91–110

Luo Z, Tseng P (1992) On the convergence of coordinate descent method for convex differentiable minimization.
Journal of Optimization Theory and Applications 72(1):7–35

Malisiewicz T, Efros AA (2008) Recognition by association via learning per-exemplar distances. In: CVPR

Manocha D, Zhu Y (1994) A fast algorithm and system for the inverse kinematics of general serial manipulators.
In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Marthi B, Russell SJ, Wolfe J (2008) Angelic Hierarchical Planning: Optimal and Online Algorithms. In:
ICAPS

Mason MT (2001) Mechanics of Robotic Manipulation. MIT Press, Cambridge, MA

Matousek J (1999) Geometric Discrepancy: an Illustrated Guide. Springer, Berlin

McMillen C, Rybski P, Veloso MM (2005) Levels of multi-robot coordination for dynamic environments. In:
Lynne E Parker ACS Frank E Schneider (ed) Multi-Robot Systems. From Swarms to Intelligent Automata,
vol 3, Springer, pp 53–64

Michel P (2008) Integrating perception and planning for humanoid autonomy. PhD thesis, Robotics Institute,
Carnegie Mellon University

Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In: ECCV ’02: Proceedings of the
7th European Conference on Computer Vision-Part I, pp 128–142

Mikolajczyk K, Schmid C (2004) Scale & affine invariant interest point detectors. Int J Comput Vision 60(1):63–
86

Mikolajczyk K, Zisserman A, Schmid C (2003) Shape recognition with edge-based features. In: Proceedings of
the British Machine Vision Conference, vol 2, pp 779–788

Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool LV (2005) A
comparison of affine region detectors. International Journal of Computer Vision 65(1/2):43–72

Miller AT (2001) Graspit!: A versatile simulator for robotic grasping. PhD thesis, Department of Computer
Science, Columbia University

Moreels P, Perona P (2005) Evaluation of features detectors and descriptors based on 3d objects. In: Interna-
tional Conference on Computer Vision (ICCV)

Morel J, GYu (2009) Asift: A new framework for fully affine invariant image comparison. SIAM Journal on
Imaging Sciences 2

Morris AC (2007) Robotic introspection for exploration and mapping of subterranean environments. PhD thesis,
Robotics Institute, Carnegie Mellon University

Neuronics (2001-present) Katana arm. URL http://www.neuronics.ch/cms_en

Niskanen S, stergrd PRJ (2003) Cliquer user’s guide, version 1.0. Tech. Rep. T48, Communications Laboratory,
Helsinki University of Technology

Okada K, Ogura T, Haneda A, Fujimoto J, Gravot F, Inaba M (2004) Humanoid motion generation system on
hrp2-jsk for daily life environment. In: International Conference on Machantronics and Automation (ICMA)

Okada K, Kojima M, Sagawa Y, Ichino T, Sato K, Inaba M (2006) Vision based behavior verification system
of humanoid robot for daily environment tasks. In: Proceedings of IEEE-RAS International Conference on
Humanoid Robots (Humanoids)

Okada K, Tokutsu S, Ogura T, Kojima M, Mori Y, Maki T, Inaba M (2008) Scenario controller for daily
assistive humanoid using visual verification. In: Proceedings of the International Conference on Intelligent
Autonomous Systems (IAS)

http://www.neuronics.ch/cms_en

Oriolo G, Vendittelli M, Freda L, Troso G (2004) The SRT Method: Randomized strategies for exploration.
In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Pantofaru C, Hebert M (2007) A framework for learning to recognize and segment object classes using weakly
supervised training data. In: British Machine Vision Conference

Pelossof R, Miller A, Allen P, Jebara T (2004) An svm learning approach to robotic grasping. In: Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA)

Peters J, Schaal S (2008) Learning to control in operational space. International Journal of Robotics Research
27(2):197–212

Pham MT, Cham TJ (2007) Online learning asymmetric boosted classifiers for object detection. In: In Proc.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’07)

Prats M, Martinet P, del Pobil AP, Lee S (2007a) Vision/force control in task-oriented grasping and manipu-
lation. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS)

Prats M, Sanz P, del Pobil A (2007b) Task-oriented grasping using hand preshapes and task frames. In:
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Prats M, Martinet P, del Pobil A, Lee S (2008a) Robotic execution of everyday tasks by means of external
vision/force control. Journal of Intelligent Service Robotics 1(3):253–266

Prats M, Sanz PJ, del Pobil AP (2008b) A sensor-based approach for physical interaction based on hand, grasp
and task frames. In: Proceedings of the Manipulation Workshop in Robotics Science And Systems

Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) (ros): an
open-source robot operating system. In: ICRA Workshop on Open Source Software in Robotics

Raghavan M, BRoth (1990) A general solution for the inverse kinematics of all series chains. In: Proc. of the
8th CISM-IFTOMM Symposium on Robots and Manipulators

Ratcliff JW (2006) http://code.google.com/p/convexdecomposition/

Rimon E (1999) Caging planar bodies by one-parameter two-fingered gripping systems. The International
Journal of Robotics Research 18:299–318

Rimon E, Blake A (1986) Caging 2d by one-parameter two-fingered gripping systems. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA)

Russell S, Norvig P (1995) Artificial Intelligence: A Modern Approach. Prentice Hall, Inc.

Rusu RB, Marton ZC, Blodow N, Dolha M, Beetz M (2008) Towards 3d point cloud based object maps for
household environments. Robotics and Autonomous Systems Journal (Special Issue on Semantic Knowledge)

Rybski P, Veloso MM (2009) Prioritized multihypothesis tracking by a robot with limited sensing. EURASIP
Journal on Advances in Signal Processing 2009:138–154

Rybski PE, Roumeliotis S, Gini M, Papanikopoulos N (2008) Appearance-based mapping using minimalistic
sensor models. Autonomous Robots 24(3):159–167

Saidi F, Stasse O, Yokoi K, Kanehiro F (2007) Online object search with a humanoid robot. In: Proceedings
of IEEE-RAS International Conference on Humanoid Robots (Humanoids)

Schaffalitzky F, Zisserman A (2002) Multi-view matching for unordered image sets, or how do i organize my
holiday snaps. In: Proc. of European Conference on Computer Vision (ECCV)

Schneiderman H, Kanade T (2004) Object detection using the statistics of parts. International Journal of
Computer Vision 56(3):151–157

Schwarzer F, Saha M, claude Latombe J (2003) Exact collision checking of robot paths. Algorithmic Foundations
of Robotics V 7:25–41

Sentis L (2007) Synthesis and Control of Whole-Body Behaviors in Humanoid Systems. PhD thesis, Stanford
University, Stanford, California

Serre T, Wolf L, Poggio T (2005) Object recognition with features inspired by visual cortex. In: Proc of Conf.
on Computer Vision and Pattern Recognition

Shi J, Malik J (1997) Normalized cuts and image segmentation. In: Proc of the 1997 Conference on Computer
Vision and Pattern Recognition (CVPR ’97), IEEE Computer Society

Srinivasa S, Ferguson D, Weghe MV, Diankov R, Berenson D, Helfrich C, Strasdat H (2008) The robotic busboy:
Steps towards developing a mobile robotic home assistant. In: Proceedings of the International Conference
on Intelligent Autonomous Systems (IAS)

Srinivasa S, Ferguson D, Helfrich C, Berenson D, Collet A, Diankov R, Gallagher G, Hollinger G, Kuffner J,
Weghe MV (2009) Herb: A home exploring robotic butler. Journal of Autonomous Robots

Stilman M (2007) Task constrained motion planning in robot joint space. In: Proceedings of the IEEE Inter-
national Conference on Intelligent Robots and Systems (IROS)

Stilman M, Nishiwaki K, Kagami S (2007a) Learning object models for humanoid manipulation. In: IEEE
International Conference on Humanoid Robotics

Stilman M, Schamburek J, Kuffner J, Asfour T (2007b) Manipulation planning among movable obstacles. In:
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Stolarz J, Rybski P (2007) An architecture for the rapid development of robot behaviors. Master’s thesis,
Robotics Institute, Carnegie Mellon University

Stoytchev A, Arkin R (2004) Incorporating motivation in a hybrid robot architecture. Journal of Advanced
Computational Intelligence and Intelligent Informatics 8(3):269–274

Stroustrup B (2001) Exception safety: Concepts and techniques. In: Advances in Exception Handling Tech-
niques, Lecture Notes in Computer Science, vol 2022, Springer Berlin / Heidelberg, pp 60–76, URL
http://dx.doi.org/10.1007/3-540-45407-1_4

http://dx.doi.org/10.1007/3-540-45407-1_4

Stulp F, Fedrizzi A, Beetz M (2009) Learning and performing place-based mobile manipulation. In: In Pro-
ceedings of the 8th International Conference on Development and Learning (ICDL)

Sudsang A, Ponce J, Srinivasa N (1997) Algorithms for constructing immobilizing fixtures and grasps of three-
dimensional objects. In: In J.-P. Laumont and M. Overmars, editors, Algorithmic Foundations of Robotics
II

Torralba A, Murphy KP, Freeman WT (2007) Sharing visual features for multiclass and multiview object
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(5):854–869

Tuytelaars T, Van Gool L (2004) Matching widely separated views based on affine invariant regions. Int J
Comput Vision 59(1):61–85

Urmson C, Anhalt J, Bagnell D, Baker CR, Bittner R, Clark MN, Dolan JM, Duggins D, Galatali T, Geyer
C, Gittleman M, Harbaugh S, Hebert M, Howard TM, Kolski S, Kelly A, Likhachev M, McNaughton M,
Miller N, Peterson K, Pilnick B, Rajkumar R, Rybski PE, Salesky B, Seo YW, Singh S, Snider J, Stentz A,
Whittaker W, Wolkowicki Z, Ziglar J, Bae H, Brown T, Demitrish D, Litkouhi B, Nickolaou J, Sadekar V,
Zhang W, Struble J, Taylor M, Darms M, Ferguson D (2008) Autonomous driving in urban environments:
Boss and the urban challenge. J Field Robotics 25(8):425–466

Wampler C, Morgan A (1991) Solving the 6r inverse position problem using a generic-case solution methodology.
Mechanisms and Machine Theory 26(1):91–106

Weghe MV, Ferguson D, Srinivasa S (2007) Randomized path planning for redundant manipulators without in-
verse kinematics. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots (Humanoids)

Weisstein EW (1999-present) Cubic formula. URL http://mathworld.wolfram.com/CubicFormula.

html

Wheeler M, Ikeuchi K (1992) Towards a vision algorithm compiler for recognition of partially occluded 3-d
objects. Tech. Rep. CMU-CS-TR-92-185, Robotics Institute

Wheeler M, Ikeuchi K (1995) Sensor modeling, probabilistic hypothesis generation, and robust localization for
object recognition. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 17

Wu C, Chipp B, Li X, Frahm JM, Pollefeys M (2008) 3d model matching with viewpoint-invariant patches
(VIP). In: Proc of Conf. on Computer Vision and Pattern Recognition

Wyrobek K, Berger E, der Loos HV, Salisbury K (2008) Towards a personal robotics development platform:
Rationale and design of an intrinsically safe personal robot. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA)

Yershova A, Jain S, LaValle S, Mitchell J (2009) Generating uniform incremental grids on so(3) using the hopf
fibration. International Journal of Robotics Research

Zacharias F, Borst C, Hirzinger G (2007) Capturing robot workspace structure: Representing robot capabilities.
In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS)

http://mathworld.wolfram.com/CubicFormula.html
http://mathworld.wolfram.com/CubicFormula.html

Zacharias F, Sepp W, ChBorst, Hirzinger G (2009) Using a model of the reachable workspace to position mobile
manipulators for 3-d trajectories. In: Proceedings of IEEE-RAS International Conference on Humanoid
Robots (Humanoids)

Zacharias F, Leidner D, Schmidt F, ChBorst, Hirzinger G (2010) Exploiting structure in two-armed manipula-
tion tasks for humanoid robots. In: Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS)

Zhang L, Curless B, Seitz SM (2002) Rapid shape acquisition using color structured light and multi-pass
dynamic programming. In: In The 1st IEEE International Symposium on 3D Data Processing, Visualization,
and Transmission, pp 24–36

Zhang L, Curless B, Seitz SM (2003) Spacetime stereo: Shape recovery for dynamic scenes

Zhang Z (2000) A flexible new technique for camera calibration. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence

Zhang Z, Deriche R, Faugeras O, Luong Q (1995) A robust technique for matching two uncalibrated images
through the recovery of the unknown epipolar geometry. Artificial Intelligence 78(1-2):87–119

Zheng Y, Qian WH (2006) An enhanced ray-shooting approach to force-closure problems. Journal of Manufac-
turing Science and Engineering 128(4):960–968

	Toward A New Level of Automation
	Need for Automated Construction
	Framework Design
	Computational Approach
	OpenRAVE
	Thesis Outline
	Major Contributions
	Publication Note

	Manipulation System
	Problem Domain
	Task Specification
	Robot Specification

	System Modules
	Component Relationships
	Execution Process
	General Guidelines for Autonomy
	Discussion

	Manipulation Planning Algorithms
	Planning in Configuration Spaces
	Planning to a Goal Space
	Planning to a Grasp
	Planning with Nonlinear Grasping Constraints
	Relaxed Formulation
	Discretized Algorithm Formulation
	Randomized Algorithm Formulation
	Experimental Validation

	Planning with Free-Joints
	Planning with Base Placement
	Base Placement Sampling
	Two-Stage Planning with Navigation
	BiSpace Planning

	Discussion

	Manipulation Planning Knowledge-base
	Inverse Kinematics
	Basic Formulation of Inverse Kinematics
	Evaluating Equation Complexity
	Solving 3D Translation IK
	Solving 3D Rotation IK
	Solving 6D Transformation IK
	Solving 4D Ray IK
	Handling Redundancies
	IKFast Results

	Grasping
	Force Closure Squeezing Strategy
	Caging Strategy
	Insertion Strategy

	Kinematic Reachability
	Uniform Discrete Sampling

	Inverse Reachability
	Grasp Reachability
	Convex Decompositions
	Padding and Collisions
	Advantages of Volume Representations
	Configuration Distance Metrics

	Object Detectability Extents
	Discussion

	Planning with Sensor Visibility
	Sampling Visibility Configurations
	Sampling Valid Camera Poses
	Detecting Occlusions
	Sampling the Robot Configuration

	Planning with Visibility Goals
	Integrating Grasp Selection and Visual Feedback
	Stochastic-Gradient Descent

	Humanoid Experiments
	Industrial Bin-Picking Experiments
	Discussion

	Automated Camera Calibration
	Problem Statement
	Problem Formulation
	Process Outline
	Application to an Environment Camera

	Calibration Quality and Validation
	Discussion

	Object-Specific Pose Recognition
	Pose Recognition Algorithms
	Classifying Image Features

	Building the Object Database
	Gathering Training Data
	Processing Feature Geometry
	Feature Stability Analysis
	Geometric and Visual Words
	Relational Database

	Pose Extraction using Induced Pose Sets
	Generating Induced Pose Sets
	Pose Evaluation and Classification
	Pose Extraction Process
	Experiments

	Discussion

	Conclusion
	Contributions
	Future of Robotics: Robot-Task Compilers

	OpenRAVE - The Open Robotics Automation Virtual Environment
	Architecture
	Environment
	Validating Plugins
	Parallel Execution
	Exception and Fault Handling
	Hashes for Body Structure

	Interfaces
	Kinematics Body Interface
	Robot Interface
	Collision Checker Interface
	Physics Engine Interface
	Controller Interface
	Inverse Kinematics Interface
	Planner Interface
	Trajectory Interface
	Sensor Interface
	Sensor System Interface
	Viewer Interface
	Modular Problem Interface

	Working with Real Robots
	Padding
	Jittering

	Discussion

	References

